Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells May Shoot Messenger To Halt Protein Production

21.05.2004


Scientists have found that living cells will sometimes “shoot the messenger” as a way to halt production of certain proteins



The study, published in the May 21 issue of the journal Molecular Cell, shows that cells sometimes destroy the chemical messages that contain information for making proteins even as the messages are being “read.” The work was done by scientists at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The findings describe a poorly understood biochemical mechanism that cells may use to suddenly stop producing proteins like growth factors that activate genes in response to a hormone or other signaling chemical. The mechanism also plays a key role in Cooley’s anemia, which causes the loss of red blood cells in infants and children, and may contribute to changes in gene activation in cancer.


The mechanism involves a recently discovered enzyme that destroys the ribbon-like molecules of messenger RNA (mRNA). Messenger RNA is a copy of gene, and it contains information that describes the structure of a protein. It carries that information from genes in the cell nucleus to the region of the cell where proteins are made.

“Controlling mRNA degradation is one of the key ways that cells regulate how much of a particular protein they produce,” says senior author Daniel R. Schoenberg, professor of molecular and cellular biochemistry. “The mechanism we describe is a completely new concept in the field.”

Proteins carry out most of the work in cells. Production of a protein begins when the gene carrying the information for a protein opens — the DNA unwinds — and the information is copied in the form of another molecule, mRNA.

Next, the mRNA leaves the cell nucleus and enters the cell cytoplasm. There, complexes known as ribosomes attach to one end of the mRNA.

The ribosomes then travel along the mRNA, reading the encoded genetic message as they go. That message describes the chain of amino acids needed to make that particular protein.

As each ribosome travels along the mRNA, it builds the protein by joining the next amino acid in the sequence. When it reaches the end, it releases the raw protein into the cytoplasm.

After making a protein, the mRNA is either reused to make more of its encoded protein, or it is destroyed. Scientists generally believe the mRNA destruction is carried out in multiple steps, beginning when one end of the mRNA is lopped off. The doomed molecule is then transported to nearby recycling complexes.

The current study, carried out by Feng Yang, a graduate student in the Ohio State Biochemistry Program, shows that some mRNAs are degraded through a quicker means: they are hit much earlier in the process.

The findings show that an enzyme Schoenberg previously discovered, known as PMR1 (polysomal ribonuclease 1), attaches to the mRNA of some proteins and chops the mRNA into pieces while ribosomes are reading it.

“The enzyme is sitting right there waiting to nail it, poised for someone to pull the pin on the hand grenade,” Schoenberg says. “That gives the cell tremendous flexibility when an mRNA needs to be degraded.”

This pathway works only on certain classes of mRNA, and Schoenberg now wants to learn how the enzyme identifies which mRNA molecules to join to, and to identify the signals that trigger PMR1 to destroy an mRNA.

A grant from the National Institutes of Health funded this research.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute encompasses six interdisciplinary research programs, over 200 investigators and the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. The OSU CCC-James is a founding member of the National Comprehensive Cancer Network, and The James is consistently ranked by U.S. News & World Report as one of America’s best cancer hospitals.

Darrell E. Ward | OSU
Further information:
http://researchnews.osu.edu/archive/rnadecay.htm

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>