Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells May Shoot Messenger To Halt Protein Production

21.05.2004


Scientists have found that living cells will sometimes “shoot the messenger” as a way to halt production of certain proteins



The study, published in the May 21 issue of the journal Molecular Cell, shows that cells sometimes destroy the chemical messages that contain information for making proteins even as the messages are being “read.” The work was done by scientists at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The findings describe a poorly understood biochemical mechanism that cells may use to suddenly stop producing proteins like growth factors that activate genes in response to a hormone or other signaling chemical. The mechanism also plays a key role in Cooley’s anemia, which causes the loss of red blood cells in infants and children, and may contribute to changes in gene activation in cancer.


The mechanism involves a recently discovered enzyme that destroys the ribbon-like molecules of messenger RNA (mRNA). Messenger RNA is a copy of gene, and it contains information that describes the structure of a protein. It carries that information from genes in the cell nucleus to the region of the cell where proteins are made.

“Controlling mRNA degradation is one of the key ways that cells regulate how much of a particular protein they produce,” says senior author Daniel R. Schoenberg, professor of molecular and cellular biochemistry. “The mechanism we describe is a completely new concept in the field.”

Proteins carry out most of the work in cells. Production of a protein begins when the gene carrying the information for a protein opens — the DNA unwinds — and the information is copied in the form of another molecule, mRNA.

Next, the mRNA leaves the cell nucleus and enters the cell cytoplasm. There, complexes known as ribosomes attach to one end of the mRNA.

The ribosomes then travel along the mRNA, reading the encoded genetic message as they go. That message describes the chain of amino acids needed to make that particular protein.

As each ribosome travels along the mRNA, it builds the protein by joining the next amino acid in the sequence. When it reaches the end, it releases the raw protein into the cytoplasm.

After making a protein, the mRNA is either reused to make more of its encoded protein, or it is destroyed. Scientists generally believe the mRNA destruction is carried out in multiple steps, beginning when one end of the mRNA is lopped off. The doomed molecule is then transported to nearby recycling complexes.

The current study, carried out by Feng Yang, a graduate student in the Ohio State Biochemistry Program, shows that some mRNAs are degraded through a quicker means: they are hit much earlier in the process.

The findings show that an enzyme Schoenberg previously discovered, known as PMR1 (polysomal ribonuclease 1), attaches to the mRNA of some proteins and chops the mRNA into pieces while ribosomes are reading it.

“The enzyme is sitting right there waiting to nail it, poised for someone to pull the pin on the hand grenade,” Schoenberg says. “That gives the cell tremendous flexibility when an mRNA needs to be degraded.”

This pathway works only on certain classes of mRNA, and Schoenberg now wants to learn how the enzyme identifies which mRNA molecules to join to, and to identify the signals that trigger PMR1 to destroy an mRNA.

A grant from the National Institutes of Health funded this research.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute encompasses six interdisciplinary research programs, over 200 investigators and the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. The OSU CCC-James is a founding member of the National Comprehensive Cancer Network, and The James is consistently ranked by U.S. News & World Report as one of America’s best cancer hospitals.

Darrell E. Ward | OSU
Further information:
http://researchnews.osu.edu/archive/rnadecay.htm

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>