Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells toward sperm cells and back again

19.05.2004


Experiments reverse cells’ developmental course

In experiments with fruit flies, Johns Hopkins scientists have restored the insect’s sperm-making stem cells by triggering cells on the way to becoming sperm to reverse course. The unexpected findings are described in the May 13 issue of Science.

Like all stem cells, the fruit fly’s sperm-making stem cells can renew themselves or can develop into more specialized cells -- eventually sperm in this case. While a few types of fairly specialized cells can naturally revert to their stem cell origins at times -- think regrowth of salamanders’ lost limbs -- the researchers’ experiments document what is thought to be one the first clear examples of an artificially triggered reversal of cell fate in an adult creature.



"With a few exceptions, it is thought that once cells start down the path toward specialization, they can’t go back," says Erika Matunis, Ph.D., assistant professor of cell biology in Hopkins’ Institute for Basic Biomedical Sciences. "But we’ve clearly shown in fruit flies that lost sperm-making stem cells can be replaced, not by replication of remaining stem cells, but by reversal of more specialized cells."

The Hopkins team studied fruit flies whose "don’t-specialize" signal for stem cells can be turned on or off by changing the temperature around them. In experiments to examine what happens when the signal is turned off and then turned back on, second-year graduate student Crista Brawley discovered that cells that are two steps -- but not more -- away from their stem cell origins can revert to the more primitive state.

Understanding how and until what point specialized cells can reverse course might help scientists figure out how to use stem cells to regenerate lost or injured tissue, or how to trigger remaining tissue to better heal itself. There is no immediate application for people, however, because little is known about the corresponding process in humans.

"In fruit flies, we literally can count each stem cell in the testis because we can detect proteins that distinguish them, and we know exactly where the stem cells are supposed to be," says Matunis. "In fruit flies, we also know the signal that keeps the stem cells in their primitive state, and we can turn it off and on. We don’t have any of this information for people, or even for mice."

In the fruit flies, sperm are made by a system that consists of a raspberry-like cluster of sperm-making stem cells centered around a "hub."

The hub emits a chemical signal that tells only the closest cells to maintain their stem cell status. When one of these stem cells divides in two, the "daughter" cell nearest the hub remains a stem cell while the one slightly farther away gets one step closer to being sperm. These more-distant daughter cells, called gonialblasts, then become cells called spermatogonia, each of which divides a number of times before becoming spermatocytes, precursors to sperm.

To see whether lost stem cells could come back, Brawley put the temperature-sensitive fruit flies in warmer climes of 29 degrees Celsius (a balmy 84 degrees Fahrenheit) for two days, and discovered that only 22 percent of testes still contained sperm-making stem cells. After four days, almost no stem cells remained at all.

Brawley then used a special microscope to examine whether stem cells returned in flies allowed to "recover" at the cooler temperature of 18 degrees Celsius (about 64 degrees Fahrenheit) for two days after spending two days at the signal-squelching warmer temperature.

"We were very happy to see that stem cells did return," says Matunis, who discovered the hubs’ signal in 2001 with Natasha Tulina.

But much to their surprise, while only 22 percent of testes had remaining stem cells going into the recovery period, 76 percent of them had stem cells after two days at 18 degrees.

"We had expected that remaining stem cells replenished the supply, but even in testes with none left, stem cells reappeared once the signal was turned back on," says Matunis. "So, the stem cells had to be coming from some other cell type within the testis."

These testes looked different, too, she says. Ones that had regained stem cells now lacked spermatogonia, and the raspberry-like cluster of stem cells essentially touched the spermatocytes in the researchers’ microscopic pictures.

However, after four days of recovery, spermatogonia repopulated the real estate between the stem cells and the spermatocytes, indicating the new stem cells worked. In flies that had only spermatocytes left after life at 29 degrees, no stem cells returned, the researchers report.

Because these observations suggested that spermatogonia might be returning to their stem cell roots, Brawley labeled some of them with fluorescent markers and exposed the flies to the warmer temperature for four days. Sure enough, only those cells that retained spermatogonia regained stem cells, and some of the new stem cells were fluorescent, she says.

Now the scientists will examine whether this reversal, called "dedifferentiation," happens naturally in the flies, and whether spermatogonia retrace the path taken by stem cells -- a true reversal -- or whether they use different signals, proteins and processes to revert to stem cells.


The studies were funded by the National Institutes of Health. Authors on the paper are Matunis and Brawley, a student in Hopkins’ Biochemistry, Cellular and Molecular Biology graduate program.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.sciencemag.org

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>