Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells toward sperm cells and back again

19.05.2004


Experiments reverse cells’ developmental course

In experiments with fruit flies, Johns Hopkins scientists have restored the insect’s sperm-making stem cells by triggering cells on the way to becoming sperm to reverse course. The unexpected findings are described in the May 13 issue of Science.

Like all stem cells, the fruit fly’s sperm-making stem cells can renew themselves or can develop into more specialized cells -- eventually sperm in this case. While a few types of fairly specialized cells can naturally revert to their stem cell origins at times -- think regrowth of salamanders’ lost limbs -- the researchers’ experiments document what is thought to be one the first clear examples of an artificially triggered reversal of cell fate in an adult creature.



"With a few exceptions, it is thought that once cells start down the path toward specialization, they can’t go back," says Erika Matunis, Ph.D., assistant professor of cell biology in Hopkins’ Institute for Basic Biomedical Sciences. "But we’ve clearly shown in fruit flies that lost sperm-making stem cells can be replaced, not by replication of remaining stem cells, but by reversal of more specialized cells."

The Hopkins team studied fruit flies whose "don’t-specialize" signal for stem cells can be turned on or off by changing the temperature around them. In experiments to examine what happens when the signal is turned off and then turned back on, second-year graduate student Crista Brawley discovered that cells that are two steps -- but not more -- away from their stem cell origins can revert to the more primitive state.

Understanding how and until what point specialized cells can reverse course might help scientists figure out how to use stem cells to regenerate lost or injured tissue, or how to trigger remaining tissue to better heal itself. There is no immediate application for people, however, because little is known about the corresponding process in humans.

"In fruit flies, we literally can count each stem cell in the testis because we can detect proteins that distinguish them, and we know exactly where the stem cells are supposed to be," says Matunis. "In fruit flies, we also know the signal that keeps the stem cells in their primitive state, and we can turn it off and on. We don’t have any of this information for people, or even for mice."

In the fruit flies, sperm are made by a system that consists of a raspberry-like cluster of sperm-making stem cells centered around a "hub."

The hub emits a chemical signal that tells only the closest cells to maintain their stem cell status. When one of these stem cells divides in two, the "daughter" cell nearest the hub remains a stem cell while the one slightly farther away gets one step closer to being sperm. These more-distant daughter cells, called gonialblasts, then become cells called spermatogonia, each of which divides a number of times before becoming spermatocytes, precursors to sperm.

To see whether lost stem cells could come back, Brawley put the temperature-sensitive fruit flies in warmer climes of 29 degrees Celsius (a balmy 84 degrees Fahrenheit) for two days, and discovered that only 22 percent of testes still contained sperm-making stem cells. After four days, almost no stem cells remained at all.

Brawley then used a special microscope to examine whether stem cells returned in flies allowed to "recover" at the cooler temperature of 18 degrees Celsius (about 64 degrees Fahrenheit) for two days after spending two days at the signal-squelching warmer temperature.

"We were very happy to see that stem cells did return," says Matunis, who discovered the hubs’ signal in 2001 with Natasha Tulina.

But much to their surprise, while only 22 percent of testes had remaining stem cells going into the recovery period, 76 percent of them had stem cells after two days at 18 degrees.

"We had expected that remaining stem cells replenished the supply, but even in testes with none left, stem cells reappeared once the signal was turned back on," says Matunis. "So, the stem cells had to be coming from some other cell type within the testis."

These testes looked different, too, she says. Ones that had regained stem cells now lacked spermatogonia, and the raspberry-like cluster of stem cells essentially touched the spermatocytes in the researchers’ microscopic pictures.

However, after four days of recovery, spermatogonia repopulated the real estate between the stem cells and the spermatocytes, indicating the new stem cells worked. In flies that had only spermatocytes left after life at 29 degrees, no stem cells returned, the researchers report.

Because these observations suggested that spermatogonia might be returning to their stem cell roots, Brawley labeled some of them with fluorescent markers and exposed the flies to the warmer temperature for four days. Sure enough, only those cells that retained spermatogonia regained stem cells, and some of the new stem cells were fluorescent, she says.

Now the scientists will examine whether this reversal, called "dedifferentiation," happens naturally in the flies, and whether spermatogonia retrace the path taken by stem cells -- a true reversal -- or whether they use different signals, proteins and processes to revert to stem cells.


The studies were funded by the National Institutes of Health. Authors on the paper are Matunis and Brawley, a student in Hopkins’ Biochemistry, Cellular and Molecular Biology graduate program.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.sciencemag.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>