Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells more vulnerable to toxic chemotherapy when protective molecule is disabled

19.05.2004


Blocking a molecule that rids cells of potentially toxic molecules might make chemotherapy for leukemia more effective, but it could also leave healthy stem cells more vulnerable to toxic cancer treatment drugs



Inactivating a protective molecule in leukemic cells to make them more vulnerable to chemotherapy might also make healthy blood-forming cells more sensitive to the toxic effects of those same drugs. These findings have been published in the Journal of Biological Chemistry by investigators at St. Jude Children’s Research Hospital.
The St. Jude researchers based their conclusion on results of a study of a molecule whose normal function is to rid hematopoietic stem cells (HSCs) of a potentially toxic molecule called heme. HSCs are the "parent" cells in the bone marrow that give rise to red and white blood cells.

Heme is an oxygen-carrying molecule that is a key part of enzymes used by cells to extract energy from food and by red blood cells to carry oxygen to tissues. The basic building block of heme is porphyrin, which is toxic to cells when it accumulates in high concentrations, according to John Schuetz, Ph.D., associate member in the department of Pharmaceutical Sciences. Schuetz is senior author of the Journal of Biological Chemistry article, which also reports on studies of a molecule called BCRP (breast cancer resistance protein), which protects HSCs from excessive levels of heme.



In conditions of low oxygen, cells tend to compensate by making more heme molecules. But the cells must also protect themselves from excess heme by making BCRP, which is capable of binding to these oxygen-carrying molecules and transporting them out through the cell membrane. The ability of cells to rid themselves of excess heme is especially important in the bone marrow, where HSCs are normally exposed to a low-oxygen environment that stimulates the cells to produce more of this molecule.

In addition to heme, BCRP carries a variety of toxic and carcinogenic chemicals out of cells, including certain drugs used to treat leukemia. Researchers elsewhere are developing molecules to block BCRP in leukemic cells in order to make them more vulnerable to chemotherapy. However, drugs that block BCRP in leukemic cells would also block this molecule in healthy HSCs, leaving them vulnerable to toxic chemotherapy drugs.

"If that happens, the patient’s normal blood-forming cells could be depleted," Schuetz said. "And that would reduce the body’s ability to produce healthy red and white blood cells, which would certainly complicate the patient’s medical condition."

The investigators at St. Jude made their discoveries using bone marrow cells harvested from mice that either carried the gene for BCRP or lacked this gene. In conditions of low oxygen, the HSCs from mice that carried the gene for BCRP multiplied normally, apparently because they were able to rid themselves of excess heme. Similar cells from mice that lacked this gene--and thus could not protect themselves from excess heme--replicated only half as effectively as normal cells. When HSCs from mice carrying the BCRP gene were kept at normal oxygen levels and given the anti-leukemic drug mitoxantrone, 40 percent survived, apparently because they used BCRP to rid themselves of that drug. However, if HSCs from mice lacking the BCRP gene were exposed to mitoxantrone under the same conditions, none of the cells survived.


Other authors of the study were Partha Krishnamurthy, Sheng Zhou, Kelly E. Mercer and Brian P. Sorrentino (St. Jude); Douglas D. Ross, Takeo Nakanishi and Kim Bailey-Dell (University of Maryland School of Medicine); and Balazs Sarkadi (National Medical Center, Budapest Hungary). This work was supported in part by NIH, a Cancer Center support grant, a VA Merit Review Grant, ALSAC and a Howard Hughes International Scholarship.

St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>