Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When ’reaper’ gene comes, cell death follows

18.05.2004


’Reaper’ genes essential for cell death



In what may be the cellular equivalent of watching the Grim Reaper in action, University of Utah School of Medicine researchers have shown that two "death activator" genes are essential for cell death when Drosophila (fruit flies) metamorphose from larvae to adults. Death of obsolete larval tissue is critical in insect metamorphosis.

The two genes--reaper (rpr) and hid (head involution defective)--act by overcoming the protective efforts of a death inhibitor, DIAP1. Once DIAP1 is disabled, the inexorable begins and larval tissues like the salivary glands are rapidly destroyed, according to Carl S. Thummel, Ph.D., professor of human genetics at the Eccles Institute of Human Genetics, and doctoral student Viravuth P. Yin. The two will publish their findings in the May 25 print edition of the Proceedings of the National Academy of Sciences. The article will appear online the week of May 17.


"They are true (cell) death genes in Drosophila that are critical for the destruction of larval tissue during metamorphosis," Thummel said.

The finding opens the possibility that someday death-inducing genes could be unloosed to specifically kill unwanted cells--such as tumors.

Cell death (apoptosis) begins when ecdysone, a steroid hormone, binds to its receptor, EcR/USP. This binding allows the receptor to activate three key regulatory genes--E93, BR-C, and E74A. Those genes turn on reaper and hid, which then deactivate the death inhibitor DIAP1. When DIAP1 is no longer functioning, cell death is unleashed in the salivary glands, leading to the destruction of larval tissue and their replacement by adult structures.

Ecdysone already was known to regulate a number of genes; and reaper and hid were known as death activators. But it had not been proved that those two genes are essential for salivary gland cell death to occur, and no roles were known for DIAP1 in preventing premature larval cell death. Ecdysone is the critical signal in starting the process, according to Thummel.

"This hormone (ecdysone) is the trigger that changes Drosophila from its larval to adult form," he said.

To identify roles for reaper and hid in cell death, Yin and Thummel used a combination of genetic tools to reduce their function. This allowed them to determine how the two genes influenced cell death in Drosophila larvae. When hid was removed from the process, salivary gland death was partially blocked. Both reaper and hid had to be inactivated before Yin saw a complete block in cell death, leading to the conclusion that both genes are required for efficient larval tissue cell death.


For information contact:
Carl Thummel, Ph.D., 581-2937 or Viravuth P. Yin, 581-2612.

Cindy Fazzi | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>