Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When ’reaper’ gene comes, cell death follows

18.05.2004


’Reaper’ genes essential for cell death



In what may be the cellular equivalent of watching the Grim Reaper in action, University of Utah School of Medicine researchers have shown that two "death activator" genes are essential for cell death when Drosophila (fruit flies) metamorphose from larvae to adults. Death of obsolete larval tissue is critical in insect metamorphosis.

The two genes--reaper (rpr) and hid (head involution defective)--act by overcoming the protective efforts of a death inhibitor, DIAP1. Once DIAP1 is disabled, the inexorable begins and larval tissues like the salivary glands are rapidly destroyed, according to Carl S. Thummel, Ph.D., professor of human genetics at the Eccles Institute of Human Genetics, and doctoral student Viravuth P. Yin. The two will publish their findings in the May 25 print edition of the Proceedings of the National Academy of Sciences. The article will appear online the week of May 17.


"They are true (cell) death genes in Drosophila that are critical for the destruction of larval tissue during metamorphosis," Thummel said.

The finding opens the possibility that someday death-inducing genes could be unloosed to specifically kill unwanted cells--such as tumors.

Cell death (apoptosis) begins when ecdysone, a steroid hormone, binds to its receptor, EcR/USP. This binding allows the receptor to activate three key regulatory genes--E93, BR-C, and E74A. Those genes turn on reaper and hid, which then deactivate the death inhibitor DIAP1. When DIAP1 is no longer functioning, cell death is unleashed in the salivary glands, leading to the destruction of larval tissue and their replacement by adult structures.

Ecdysone already was known to regulate a number of genes; and reaper and hid were known as death activators. But it had not been proved that those two genes are essential for salivary gland cell death to occur, and no roles were known for DIAP1 in preventing premature larval cell death. Ecdysone is the critical signal in starting the process, according to Thummel.

"This hormone (ecdysone) is the trigger that changes Drosophila from its larval to adult form," he said.

To identify roles for reaper and hid in cell death, Yin and Thummel used a combination of genetic tools to reduce their function. This allowed them to determine how the two genes influenced cell death in Drosophila larvae. When hid was removed from the process, salivary gland death was partially blocked. Both reaper and hid had to be inactivated before Yin saw a complete block in cell death, leading to the conclusion that both genes are required for efficient larval tissue cell death.


For information contact:
Carl Thummel, Ph.D., 581-2937 or Viravuth P. Yin, 581-2612.

Cindy Fazzi | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>