Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One step further toward treatment for degenerative diseases


Scientists identify a key mechanism to recognize misfolded proteins

Scientists at McGill University’s Faculty of Medicine have discovered a key step that will provide new targets for treatments of many degenerative diseases such as Alzheimer’s, Cystic Fibrosis and Diabetes. Dr. David Thomas, Chair of Biochemistry, Dr. John Bergeron, Chair of Anatomy and Cell Biology and colleagues have identified a mechanism by which misfolded proteins are recognized in the cell. This is a critical process as proteins that are not correctly folded or shaped are extremely harmful to cells and are the basis for a number of human degenerative diseases. The findings were published in the prestigious journal Nature Structural and Molecular Biology.

"We have identified a central enzyme that is sensitive to very subtle changes in the folded state of a protein," explained Dr. David Thomas. "Proteins are the building blocks and machines of our bodies. In order for them to work correctly they have to fit together. Cells in our bodies have developed quality control mechanisms to assure proper folding. When something goes wrong, cells can accumulate misfolded proteins that don’t work properly. The misfolding of proteins is the basis for a number of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Our findings are an important step toward the development of innovative prevention and treatment strategies for such diseases."

Dr. Thomas and Dr. Bergeron, together with graduate student Sean Taylor and post-doctoral fellow Andrew Ferguson, showed that the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) can sense specific regions of disorder and activity of proteins – key steps to recognizing misfolded proteins and removing them from the cells.

The paper and accompanying News and Views are currently available online.

This study was supported by research grants from the Canadian Institutes of Health Research.

Dr. David Thomas ( is the Chair of the McGill Department of Biochemistry and holds a Canada Research Chair in Molecular Genetics. Dr. Thomas’ research focuses on cell signaling pathways and their role in infectious diseases, and on molecular chaperone systems in the endoplasmic reticulum.

McGill University ( is Canada’s leading research-intensive university and has earned an international reputation for scholarly achievement and scientific discovery. The 21 faculties and professional schools offer more than 300 programs, from the undergraduate to the doctoral level, and our professors have received their education from leading academic centres around the world. There are approximately 23,000 full- and part- time undergraduate students and 7,000 full- and part-time graduate students. McGill was recently named Canadian Research University of the Year in the Medical/Doctoral category based on research funding and publication information compiled by Research Infosource.

The CIHR ( is Canada’s premier agency for health research. Its objective is to excel, according to internationally accepted standards of scientific excellence, in the creation of new knowledge and its translation into improved health for Canadians, more effective health services and products and a strengthened health care system. CIHR’s Institute of Neurosciences, Mental Health and Addiction supports research to enhance mental health, neurological health, vision, hearing, and cognitive functioning and to reduce the burden of related disorders through prevention strategies, screening, diagnosis, treatment, support systems, and palliation.

Sandra McPherson | McGill University
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>