Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One step further toward treatment for degenerative diseases

18.05.2004


Scientists identify a key mechanism to recognize misfolded proteins



Scientists at McGill University’s Faculty of Medicine have discovered a key step that will provide new targets for treatments of many degenerative diseases such as Alzheimer’s, Cystic Fibrosis and Diabetes. Dr. David Thomas, Chair of Biochemistry, Dr. John Bergeron, Chair of Anatomy and Cell Biology and colleagues have identified a mechanism by which misfolded proteins are recognized in the cell. This is a critical process as proteins that are not correctly folded or shaped are extremely harmful to cells and are the basis for a number of human degenerative diseases. The findings were published in the prestigious journal Nature Structural and Molecular Biology.

"We have identified a central enzyme that is sensitive to very subtle changes in the folded state of a protein," explained Dr. David Thomas. "Proteins are the building blocks and machines of our bodies. In order for them to work correctly they have to fit together. Cells in our bodies have developed quality control mechanisms to assure proper folding. When something goes wrong, cells can accumulate misfolded proteins that don’t work properly. The misfolding of proteins is the basis for a number of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Our findings are an important step toward the development of innovative prevention and treatment strategies for such diseases."


Dr. Thomas and Dr. Bergeron, together with graduate student Sean Taylor and post-doctoral fellow Andrew Ferguson, showed that the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) can sense specific regions of disorder and activity of proteins – key steps to recognizing misfolded proteins and removing them from the cells.

The paper and accompanying News and Views are currently available online.


This study was supported by research grants from the Canadian Institutes of Health Research.

Dr. David Thomas (http://www.mcgill.ca/biochemistry/department/faculty/thomas/) is the Chair of the McGill Department of Biochemistry and holds a Canada Research Chair in Molecular Genetics. Dr. Thomas’ research focuses on cell signaling pathways and their role in infectious diseases, and on molecular chaperone systems in the endoplasmic reticulum.

McGill University (www.mcgill.ca) is Canada’s leading research-intensive university and has earned an international reputation for scholarly achievement and scientific discovery. The 21 faculties and professional schools offer more than 300 programs, from the undergraduate to the doctoral level, and our professors have received their education from leading academic centres around the world. There are approximately 23,000 full- and part- time undergraduate students and 7,000 full- and part-time graduate students. McGill was recently named Canadian Research University of the Year in the Medical/Doctoral category based on research funding and publication information compiled by Research Infosource.

The CIHR (www.cihr-irsc.gc.ca) is Canada’s premier agency for health research. Its objective is to excel, according to internationally accepted standards of scientific excellence, in the creation of new knowledge and its translation into improved health for Canadians, more effective health services and products and a strengthened health care system. CIHR’s Institute of Neurosciences, Mental Health and Addiction supports research to enhance mental health, neurological health, vision, hearing, and cognitive functioning and to reduce the burden of related disorders through prevention strategies, screening, diagnosis, treatment, support systems, and palliation.

Sandra McPherson | McGill University
Further information:
http://www.mcgill.ca/biochemistry/department/faculty/thomas/
http://www.mcgill.ca
http://www.cihr-irsc.gc.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>