Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Track Protein Linked to Neurological Movement Disorder

18.05.2004


A team led by researchers at Washington University School of Medicine in St. Louis is one step closer to understanding the function of a protein linked to an inherited form of the movement disorder dystonia.



The protein, torsinA, is defective in patients with DYT1 dystonia, an inherited condition that causes uncontrollable movements in the limbs and torso. Learning what torsinA does could be an important step toward developing a treatment for the disorder.

“The hope is that understanding as many forms of dystonia as we can will give us some insight into how we might treat movement disorders generally,” says Phyllis I. Hanson, M.D., Ph.D., assistant professor of cell biology and physiology and senior investigator for the study. “Any new insights might also be helpful for understanding secondary dystonias. These are conditions in which dystonia is a complication of another disorder, such as Parkinson’s disease.”


The study is available in the early online edition of the Proceedings of the National Academy of Sciences and will appear in the May 18 print edition of the journal.

According to the Dystonia Research Foundation, approximately 300,000 Americans have some form of primary dystonia. Dystonia is a neurological movement disorder characterized by involuntary muscle contractions that force certain parts of the body into abnormal, sometimes painful, movements or postures. Dystonia can affect any part of the body including the arms and legs, trunk, neck, eyelids, face or vocal cords. DYT1 dystonia affects about 10,000 Americans.

Co-author Xandra Breakefield, Ph.D., professor of neurology at Harvard University, led the team that identified the gene for DYT1 dystonia in 1997. Researchers later found the gene makes torsinA. Study of torsinA’s structure suggested it belongs to a family of proteins known as AAA+ ATPase proteins. This protein family typically helps cells recycle resources by breaking down assemblies of other proteins and molecules into their components, like disassembling a car for reuse of its parts.

Hanson, who studies behavior of cell membranes, previously found torsinA in the endoplasmic reticulum, a large compartment that has branches that pass through various regions of the cell.
For the new study, she engineered defective copies of the torsinA gene and inserted them into cultured mammalian cells. Hanson designed one of the defective genes to make a form of torsinA that would stick permanently to adenosine triphosphate (ATP), a compound cells use to move energy around. Breaking down ATP normally provides torsinA with a great deal of energy, probably enabling it to perform its main job. Hanson hoped making torsinA stick to ATP would trap it at its normal site of action, revealing where in the cell the protein usually works.

The TorsinA that was stuck to ATP moved into the nuclear envelope, the portion of the endoplasmic reticulum that surrounds the nucleus, the central compartment of the cell where DNA is kept.

“Based on what’s known about other proteins like torsinA, we figure this means torsinA is probably taking something apart in the nuclear envelope,” Hanson says. “The questions are: What is it taking apart and how is that important for the normal structure and function of the nuclear envelope? And how is that activity perturbed by the genetic mutation responsible for DYT1 dystonia?”

Defects in other proteins found in the nuclear envelope recently have been linked to several diseases, including a form of muscular dystrophy and a neuropathy.

“Like any other research, this finding has its caveats,” Hanson says. “But we think that there’s likely to be some important function that torsinA performs in the nuclear envelope.”

Hanson plans further studies to determine torsinA’s function.
###
Naismith TV, Heuser JE, Breakefield XO, Hanson PI. TorsinA in the nuclear envelope. Proceedings of the National Academy of Science, May 18, 2004.

Funding from the National Institutes of Health, the Dystonia Medical Research Foundation, the W.M. Keck Foundation, the McKnight Foundation and the Jack Fasciana Fund for Support of Dystonia Research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked second in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/603ABE927E2ACF2B86256E97005509C9?OpenDocument

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>