Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Track Protein Linked to Neurological Movement Disorder

18.05.2004


A team led by researchers at Washington University School of Medicine in St. Louis is one step closer to understanding the function of a protein linked to an inherited form of the movement disorder dystonia.



The protein, torsinA, is defective in patients with DYT1 dystonia, an inherited condition that causes uncontrollable movements in the limbs and torso. Learning what torsinA does could be an important step toward developing a treatment for the disorder.

“The hope is that understanding as many forms of dystonia as we can will give us some insight into how we might treat movement disorders generally,” says Phyllis I. Hanson, M.D., Ph.D., assistant professor of cell biology and physiology and senior investigator for the study. “Any new insights might also be helpful for understanding secondary dystonias. These are conditions in which dystonia is a complication of another disorder, such as Parkinson’s disease.”


The study is available in the early online edition of the Proceedings of the National Academy of Sciences and will appear in the May 18 print edition of the journal.

According to the Dystonia Research Foundation, approximately 300,000 Americans have some form of primary dystonia. Dystonia is a neurological movement disorder characterized by involuntary muscle contractions that force certain parts of the body into abnormal, sometimes painful, movements or postures. Dystonia can affect any part of the body including the arms and legs, trunk, neck, eyelids, face or vocal cords. DYT1 dystonia affects about 10,000 Americans.

Co-author Xandra Breakefield, Ph.D., professor of neurology at Harvard University, led the team that identified the gene for DYT1 dystonia in 1997. Researchers later found the gene makes torsinA. Study of torsinA’s structure suggested it belongs to a family of proteins known as AAA+ ATPase proteins. This protein family typically helps cells recycle resources by breaking down assemblies of other proteins and molecules into their components, like disassembling a car for reuse of its parts.

Hanson, who studies behavior of cell membranes, previously found torsinA in the endoplasmic reticulum, a large compartment that has branches that pass through various regions of the cell.
For the new study, she engineered defective copies of the torsinA gene and inserted them into cultured mammalian cells. Hanson designed one of the defective genes to make a form of torsinA that would stick permanently to adenosine triphosphate (ATP), a compound cells use to move energy around. Breaking down ATP normally provides torsinA with a great deal of energy, probably enabling it to perform its main job. Hanson hoped making torsinA stick to ATP would trap it at its normal site of action, revealing where in the cell the protein usually works.

The TorsinA that was stuck to ATP moved into the nuclear envelope, the portion of the endoplasmic reticulum that surrounds the nucleus, the central compartment of the cell where DNA is kept.

“Based on what’s known about other proteins like torsinA, we figure this means torsinA is probably taking something apart in the nuclear envelope,” Hanson says. “The questions are: What is it taking apart and how is that important for the normal structure and function of the nuclear envelope? And how is that activity perturbed by the genetic mutation responsible for DYT1 dystonia?”

Defects in other proteins found in the nuclear envelope recently have been linked to several diseases, including a form of muscular dystrophy and a neuropathy.

“Like any other research, this finding has its caveats,” Hanson says. “But we think that there’s likely to be some important function that torsinA performs in the nuclear envelope.”

Hanson plans further studies to determine torsinA’s function.
###
Naismith TV, Heuser JE, Breakefield XO, Hanson PI. TorsinA in the nuclear envelope. Proceedings of the National Academy of Science, May 18, 2004.

Funding from the National Institutes of Health, the Dystonia Medical Research Foundation, the W.M. Keck Foundation, the McKnight Foundation and the Jack Fasciana Fund for Support of Dystonia Research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked second in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/603ABE927E2ACF2B86256E97005509C9?OpenDocument

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>