Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Middle Ages Of The Russian North

17.05.2004


Current achievements in molecular genetics allow scientists to look not only in the depths of genomes but also back to ancient times. By analysing fossil DNA, Russian biologists have reconstructed the picture of colonisation of the Russian Northern lands. The research was supported by the Russian Foundation for Basic Research and the RF Ministry of Industry and Sciences.



Today’s molecular biology is capable of analysing DNAs extracted from an ancient material up to 100,000 years old. Even Neanderthal men’s DNAs can be examined. However, Russian scientists working at the V.A. Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, and Institute of Archaeology, Russian Academy of Sciences, make no moves to look to such ancient history. Analysing an ancient DNA, they reconstruct the picture of Slavic colonisation of the areas to the North of the Volga and the Sukhona watershed, lying between Lake Onega and the Pechora river. The development of the area called "the Russian North" began no later than in the 11th century, and was completed in the 16th century. According to archaeologists and anthropologists, first Slavic colonists were coming to the North in small family groups, and were settling down in a detached manner. Now, genetics could also contribute to the overall picture.

The scientists examined 47 samples of mitochondrial (mt) DNA extracted from the bones found in the burial grounds of the settlements Nefedyevo, Minino, and Shuygino located in the Vologda Region, around Lake Beloye. The burial places date back to the 11th -13th centuries. DNAs were extracted from various skeleton parts but mostly from teeth. According to the researches, ancient DNAs are best preserved in teeth. All DNA isolation and research activities were performed with extreme precautions in order not to contaminate the ancient probes with modern nucleic acid. This resulted in 47 compounds of paleo-DNA; the scientists determined their structure and isolated three kinds of mt DNA typical of the people buried in the burial places. The overwhelming majority of the examined ancient persons (43) had the so-called “Cambridge” DNA type which is typical of contemporary European inhabitants. The rest four persons had other, more rarely found types, which are, however, also typical of all populations in Eastern Europe. Therefore, the examined group can positively be said to have the European background. Those having more rare types of mt DNA were buried approximately 200 years later than the others. All of them are male. In the scientists’ opinion, they could be born from the couples consisting of local women belonging to the Finno-Ugric group, and the settlement founders’ offsprings. Thus, the assimilation did not begin immediately but started during medium colonisation stages.


Molecular geneticists note a surprising level of local inhabitants’ genetic homogeneity. It can be explained by a “founder effect” when each settlement was found by a small kindred group of 8 to 14 persons. This data is confirmed by demographers, anthropologists and archaeologists. Garments details, funeral ceremony peculiarities, and some anthropological markers related to heritable diseases speak for familiar relations within the group. Thus, eight persons out of 65 buried in Nefedyevo, had typical finger-shaped pressed-in areas on frontal and parietal bones of the inner side of the scull, which indicate predisposition to high intracranial pressure. This feature is rather rare; most of its carriers lived in the 11th century. Apparently, people who built this burial place presented a solid community with their own cultural norms. They had been living there for ages avoiding virtually any assimilation with local inhabitants, and preserved their originality. Because of complex migration processes, such genetic uniformity was not typical of most European populations. The uniformity of the kind is characteristic only for American aboriginal population: for example, ancient inhabitants of Kopana, a Maya town, and the mikstek people, the Maya descendants, bear such features.

Sergey Komarov | Informnauka
Further information:
http://www.informnauka.ru/eng/2004/2004-05-07-041_22_e.htm

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>