Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify cancer-causing gene involved in aggressive leukemia, lymphoma

17.05.2004


Using genetically engineered mice, researchers at the Johns Hopkins Children’s Center have identified a gene that functions as a cancer-causing gene (or oncogene) and may play a key role in the development of leukemia and other cancers in children and adults.



Their study, published in the May 15 issue of Cancer Research, focused on the HMG-I gene, whose protein product is overexpressed in several human cancers, but whose exact role in the formation and development of these diseases had been unknown.

Using seven genetically engineered, or transgenic, mice designed to overexpress the HMG-I gene in the lymphoid tissues and white blood cells, the Hopkins researchers found that each mouse quickly developed cases of leukemia and lymphoma similar to these diseases in humans.


"The early onset of cancerous tumors in 100 percent of these mice provides the most direct evidence for the link between overexpression of the HMG-I gene and cancer," says Linda Resar, M.D., a pediatric hematologist at the Children’ Center, and the study’s senior author.

The seven transgenic mice carried between one and 28 copies of the HMG-I gene. All of the mice developed lymphoid tumors and died between the ages of 1 and 8.5 months.

One of the mice was successfully bred to establish a line of genetically engineered mice, each of which also developed lymphoid malignancies. In most cases, lymphoma was found in the animals’ thymus, spleen, bone marrow, lymph nodes and peripheral blood, all of which is consistent with a leukemia-like disease process. In another segment of the study, the researchers also found that the HMG-I gene was overexpressed in bone marrow samples from patients with leukemia.

Resar says it is not yet known how overexpression of HMG-I interferes with normal cell growth and leads to the development of cancer in either mice or humans. She speculates that since the gene’s proteins are involved in a process known as transcriptional regulation, in which cells decide which genes to use to make proteins, increased expression of HMG-I may alter the expression of those genes involved in regulating cell growth, in turn leading to cancerous transformations.

"We believe the transgenic mouse used in this study will also provide a valuable tool for determining how overexpression of the HMG-I gene leads to cancer cell growth and for identifying new therapeutic targets for the treatment of human cancers. Much work remains to be done," she says.

The study was supported by grants from the National Cancer Institute and the American Cancer Society. Several of the study co-authors were also supported by a training grant from the National Institutes of Health.

Hopkins contributors to the study were Yi Xu, Takita Felder Sumter, Raka Bhattacharya, and Abeba Tesfaye, from the divisions of Hematology, Pediatrics and Oncology; Ephraim J. Fuchs from the Division of Oncology; David L. Huso from the Division of Comparative Medicine; and Lisa J. Wood, currently with the Oregon Health and Sciences University School of Nursing.

Staci Vernick Goldberg | EurekAlert!
Further information:
http://www.hopkinschildrens.org/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>