Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene maps of simpler life forms point the way to human disease gene

14.05.2004


In an experiment that demonstrates how maps of the genetic codes of simpler organisms can shed light on human disease, a computerized comparison of the complete genetic codes of a type of algae, a weed and humans has led medical researchers to a gene linked to a human illness.

The comparison allowed researchers at Washington University School of Medicine in St. Louis to locate human genes that code for proteins likely to become part of hair-like structures on cells known as cilia or flagella. Researchers at Johns Hopkins University used the findings to pin down the location of a gene that contributes to Bardet-Biedl Syndrome (BBS), a rare genetic condition that causes blindness, mental retardation, severe obesity and many other problems.

The genetic comparison was arranged by Susan Dutcher, Ph.D., professor of genetics and of cell biology and physiology at Washington University. Dutcher studies cilia in the green alga Chlamydomonas. The work will be published in the May 14 issue of Cell.



"Almost every cell in the human body has cilia," Dutcher says. "Cilia that are active early in development ensure that organs like the heart and stomach end up where they’re supposed to be. Cilia clear away dirt and bacteria in the respiratory tract, help sperm swim and help keep fluid flowing into and out of the brain, just to name a few examples."

Cilia and basal bodies, the structures that anchor them on the surfaces of cells, are complex. Scientists estimate that cells use at least 250 proteins to build cilia and an additional 150 for basal bodies.

Studying algae allows Dutcher’s group to isolate and manipulate cilia more easily. Simpler life forms like Chlamydomonas often have genes for many basic cellular structures and functions that were wholly or partially preserved through the evolutionary development of more complex life forms. This Dutcher means genes in the alga that help build cilia often have matches in the human genetic code that contribute to cilia construction.

Although evolution generally tends to preserve genes for basic functions that work well, exceptions have occurred during major environmental shifts. Dutcher took advantage of one of these exceptions to set up her comparison: Plants discarded their cilia when they left the ocean for land.

"That meant we could first have the computer look for all the gene matches between the algae and humans," Dutcher explains. "Next, we brought in the genetic code for Arabadopsis, a land plant, and eliminated any matches we found, assuming that those matches are genes for basic cell structures and functions that are not involved in the creation of cilia."

The comparison between genetic codes of the human and the alga produced 4,348 "fairly good" matches, according to Dutcher. In that pool of common genes, the genetic code of Arabidposis, sequenced by Washington University’s Genome Sequencing Center and Cold Spring Harbor Laboratory in 2000, has 3,660 matching genes. That left 688 genes. Comparisons with the genetic codes of the fruit fly, mouse and sea squirt, a small ocean-going animal, narrowed the results down to 200 to 300 genes.

Dutcher applied several tests to check the accuracy of the results.

"For example, we found the comparison had highlighted 92 percent of the 62 genes that we already knew were real components of flagella and basal bodies," Dutcher says. "This absolutely flabbergasted the computational biologists who helped us run the comparison. They thought we’d get more noise."

Dutcher also found that the comparison had singled out several genes already linked to polycystic kidney disease and other conditions that affect proteins in cilia. Intrigued by the possibility of using the results to identify new disease genes, she contacted Nicholas Katsanis, Ph.D., assistant professor in the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins University. Katsanis studies BBS, which is caused by problems in cilia. Mutations in six genes already had been shown to contribute to BBS or conditions like it; a seventh was thought to be in a region on chromosome number two, but the area was very large and contained nearly 230 genes.

Dutcher’s analysis had highlighted two genes in that region, and when Katsanis’ group sequenced the genes in families of patients with the condition, they found several families had abnormalities in one of the genes and named it BBS5.

Dutcher plans to study additional genes identified by the comparison.

"It’s amazing how many of these genes have completely unknown functions," says Dutcher.

She also plans further computerized comparisons of genetic codes.

"Humans have two kinds of cilia--motile cilia, which create motion, and non-motile cilia, which respond to motion," she says. "The microscopic worm C. elegans only has non-motile cilia, so if we were to take our results from this study and eliminate all the genes that have a match in the genetic code of C. elegans, that might let us highlight genes for proteins that create and control the movements of cilia."

The Washington University Genome Sequencing Center, working in collaboration with England’s Sanger Center, completed sequencing of the genetic code of C. elegans in 1998.


Li BJ, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque O, Li L, Leitch CC, Lewis RA, Green JS, Parfrey PS, Leroux MR, Davidson WS, Beales PL, Guay-Woodford LM, Yoder BK, Stormo GD, Katsanis N, Dutcher SK. Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene. Cell, May 14, 2004.

Funding from the National Institutes of Health, the March of Dimes and Monsanto.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked second in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/DDCAFFC4840B236C86256E90006E02E9?OpenDocument
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>