Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant-like enzyme acts as key life cycle switch in malaria parasite

14.05.2004


An essential switch in the life cycle of the malaria parasite has been uncovered by researchers in England, Germany and Holland.



They have established that to infect mosquitoes that transmit malaria, the parasites depend on a type of molecule normally found in plants, which they have named Calcium-Dependent Protein Kinase 4 (CDPK4).

The finding, based on studies of the malaria parasite of rodents, Plasmodium berghei, is described as basic science, but the authors suggest it may give drug researchers a specific and safe target against which to screen potential anti-malarial drug compounds.


The findings are reported in today’s edition of the journal Cell (14 May) by researchers from Imperial College London, Leiden University Medical Center, Netherlands, and the Max-Planck Institute of Infection Biology, Germany.

"This work identifies the first signalling molecule that we know is essential for the transmission of the parasite," says Dr Oliver Billker, research fellow and lead author, from Imperial College London.

"It is an essential molecule because if the malaria parasite doesn’t have this gene function then transmission of the parasite to mosquitoes is completely disrupted. It is also specific to development of the male gametes only."

"CDPK4 is unusual because apart from the malaria parasite and some other single-celled organisms, it is only seen in plants. This makes it appealing as a target for drug developers, who would not run such a big risk of developing a drug with strong side effects, because CDPK4-like molecules do not exist in humans."

The human malaria parasite has two hosts, humans and mosquitoes. Just after the mosquito has taken a blood meal from a human, malaria parasites in the mosquito bloodstream differentiate into male and female sexual forms, named micro- and macro-gametes respectively.

In 1997, Imperial College researchers discovered that the mosquito molecule xanthurenic acid is responsible for inducing development of the malaria parasite at this stage. Since then further work has shown that xanthurenic acid specifically causes a rise in calcium levels within the parasite.

Understanding how this calcium signal, which is ubiquitous in cells, is translated into a specific action in the cell at a specific stage of the parasite life cycle, took two years of careful scientific detective work by Dr Billker and colleagues.

Using data from the malaria parasite genome project completed in 2002, the researchers uncovered six protein kinases with striking similarities to those from a family normally seen in plants. These plant-like molecular switches have a unique architecture and, unlike their human counterparts, are regulated by calcium directly.

By constructing transgenic parasites in which individual kinases were deleted from the genome, the team established the essential role played by one, which they named CDPK4.

"This is an example of how we exploit genome data now," says Dr Billker. "We combine them with new methods of functional analysis such as microarrays, which tell us what genes are active at specific stages of the parasite’s life cycle, and they are giving us great insights into the molecular components involved in signalling and regulation of the parasite."

"We will use this method in future to dissect out more signalling pathways involved in the malaria parasite’s life cycle. To a cell biologist it is very exciting to see such a well-defined trigger of parasite differentiation," adds Dr Billker.

The research was supported by the UK Medical Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>