Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant-like enzyme acts as key life cycle switch in malaria parasite

14.05.2004


An essential switch in the life cycle of the malaria parasite has been uncovered by researchers in England, Germany and Holland.



They have established that to infect mosquitoes that transmit malaria, the parasites depend on a type of molecule normally found in plants, which they have named Calcium-Dependent Protein Kinase 4 (CDPK4).

The finding, based on studies of the malaria parasite of rodents, Plasmodium berghei, is described as basic science, but the authors suggest it may give drug researchers a specific and safe target against which to screen potential anti-malarial drug compounds.


The findings are reported in today’s edition of the journal Cell (14 May) by researchers from Imperial College London, Leiden University Medical Center, Netherlands, and the Max-Planck Institute of Infection Biology, Germany.

"This work identifies the first signalling molecule that we know is essential for the transmission of the parasite," says Dr Oliver Billker, research fellow and lead author, from Imperial College London.

"It is an essential molecule because if the malaria parasite doesn’t have this gene function then transmission of the parasite to mosquitoes is completely disrupted. It is also specific to development of the male gametes only."

"CDPK4 is unusual because apart from the malaria parasite and some other single-celled organisms, it is only seen in plants. This makes it appealing as a target for drug developers, who would not run such a big risk of developing a drug with strong side effects, because CDPK4-like molecules do not exist in humans."

The human malaria parasite has two hosts, humans and mosquitoes. Just after the mosquito has taken a blood meal from a human, malaria parasites in the mosquito bloodstream differentiate into male and female sexual forms, named micro- and macro-gametes respectively.

In 1997, Imperial College researchers discovered that the mosquito molecule xanthurenic acid is responsible for inducing development of the malaria parasite at this stage. Since then further work has shown that xanthurenic acid specifically causes a rise in calcium levels within the parasite.

Understanding how this calcium signal, which is ubiquitous in cells, is translated into a specific action in the cell at a specific stage of the parasite life cycle, took two years of careful scientific detective work by Dr Billker and colleagues.

Using data from the malaria parasite genome project completed in 2002, the researchers uncovered six protein kinases with striking similarities to those from a family normally seen in plants. These plant-like molecular switches have a unique architecture and, unlike their human counterparts, are regulated by calcium directly.

By constructing transgenic parasites in which individual kinases were deleted from the genome, the team established the essential role played by one, which they named CDPK4.

"This is an example of how we exploit genome data now," says Dr Billker. "We combine them with new methods of functional analysis such as microarrays, which tell us what genes are active at specific stages of the parasite’s life cycle, and they are giving us great insights into the molecular components involved in signalling and regulation of the parasite."

"We will use this method in future to dissect out more signalling pathways involved in the malaria parasite’s life cycle. To a cell biologist it is very exciting to see such a well-defined trigger of parasite differentiation," adds Dr Billker.

The research was supported by the UK Medical Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>