Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant-like enzyme acts as key life cycle switch in malaria parasite

14.05.2004


An essential switch in the life cycle of the malaria parasite has been uncovered by researchers in England, Germany and Holland.



They have established that to infect mosquitoes that transmit malaria, the parasites depend on a type of molecule normally found in plants, which they have named Calcium-Dependent Protein Kinase 4 (CDPK4).

The finding, based on studies of the malaria parasite of rodents, Plasmodium berghei, is described as basic science, but the authors suggest it may give drug researchers a specific and safe target against which to screen potential anti-malarial drug compounds.


The findings are reported in today’s edition of the journal Cell (14 May) by researchers from Imperial College London, Leiden University Medical Center, Netherlands, and the Max-Planck Institute of Infection Biology, Germany.

"This work identifies the first signalling molecule that we know is essential for the transmission of the parasite," says Dr Oliver Billker, research fellow and lead author, from Imperial College London.

"It is an essential molecule because if the malaria parasite doesn’t have this gene function then transmission of the parasite to mosquitoes is completely disrupted. It is also specific to development of the male gametes only."

"CDPK4 is unusual because apart from the malaria parasite and some other single-celled organisms, it is only seen in plants. This makes it appealing as a target for drug developers, who would not run such a big risk of developing a drug with strong side effects, because CDPK4-like molecules do not exist in humans."

The human malaria parasite has two hosts, humans and mosquitoes. Just after the mosquito has taken a blood meal from a human, malaria parasites in the mosquito bloodstream differentiate into male and female sexual forms, named micro- and macro-gametes respectively.

In 1997, Imperial College researchers discovered that the mosquito molecule xanthurenic acid is responsible for inducing development of the malaria parasite at this stage. Since then further work has shown that xanthurenic acid specifically causes a rise in calcium levels within the parasite.

Understanding how this calcium signal, which is ubiquitous in cells, is translated into a specific action in the cell at a specific stage of the parasite life cycle, took two years of careful scientific detective work by Dr Billker and colleagues.

Using data from the malaria parasite genome project completed in 2002, the researchers uncovered six protein kinases with striking similarities to those from a family normally seen in plants. These plant-like molecular switches have a unique architecture and, unlike their human counterparts, are regulated by calcium directly.

By constructing transgenic parasites in which individual kinases were deleted from the genome, the team established the essential role played by one, which they named CDPK4.

"This is an example of how we exploit genome data now," says Dr Billker. "We combine them with new methods of functional analysis such as microarrays, which tell us what genes are active at specific stages of the parasite’s life cycle, and they are giving us great insights into the molecular components involved in signalling and regulation of the parasite."

"We will use this method in future to dissect out more signalling pathways involved in the malaria parasite’s life cycle. To a cell biologist it is very exciting to see such a well-defined trigger of parasite differentiation," adds Dr Billker.

The research was supported by the UK Medical Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>