Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant-like enzyme acts as key life cycle switch in malaria parasite

14.05.2004


An essential switch in the life cycle of the malaria parasite has been uncovered by researchers in England, Germany and Holland.



They have established that to infect mosquitoes that transmit malaria, the parasites depend on a type of molecule normally found in plants, which they have named Calcium-Dependent Protein Kinase 4 (CDPK4).

The finding, based on studies of the malaria parasite of rodents, Plasmodium berghei, is described as basic science, but the authors suggest it may give drug researchers a specific and safe target against which to screen potential anti-malarial drug compounds.


The findings are reported in today’s edition of the journal Cell (14 May) by researchers from Imperial College London, Leiden University Medical Center, Netherlands, and the Max-Planck Institute of Infection Biology, Germany.

"This work identifies the first signalling molecule that we know is essential for the transmission of the parasite," says Dr Oliver Billker, research fellow and lead author, from Imperial College London.

"It is an essential molecule because if the malaria parasite doesn’t have this gene function then transmission of the parasite to mosquitoes is completely disrupted. It is also specific to development of the male gametes only."

"CDPK4 is unusual because apart from the malaria parasite and some other single-celled organisms, it is only seen in plants. This makes it appealing as a target for drug developers, who would not run such a big risk of developing a drug with strong side effects, because CDPK4-like molecules do not exist in humans."

The human malaria parasite has two hosts, humans and mosquitoes. Just after the mosquito has taken a blood meal from a human, malaria parasites in the mosquito bloodstream differentiate into male and female sexual forms, named micro- and macro-gametes respectively.

In 1997, Imperial College researchers discovered that the mosquito molecule xanthurenic acid is responsible for inducing development of the malaria parasite at this stage. Since then further work has shown that xanthurenic acid specifically causes a rise in calcium levels within the parasite.

Understanding how this calcium signal, which is ubiquitous in cells, is translated into a specific action in the cell at a specific stage of the parasite life cycle, took two years of careful scientific detective work by Dr Billker and colleagues.

Using data from the malaria parasite genome project completed in 2002, the researchers uncovered six protein kinases with striking similarities to those from a family normally seen in plants. These plant-like molecular switches have a unique architecture and, unlike their human counterparts, are regulated by calcium directly.

By constructing transgenic parasites in which individual kinases were deleted from the genome, the team established the essential role played by one, which they named CDPK4.

"This is an example of how we exploit genome data now," says Dr Billker. "We combine them with new methods of functional analysis such as microarrays, which tell us what genes are active at specific stages of the parasite’s life cycle, and they are giving us great insights into the molecular components involved in signalling and regulation of the parasite."

"We will use this method in future to dissect out more signalling pathways involved in the malaria parasite’s life cycle. To a cell biologist it is very exciting to see such a well-defined trigger of parasite differentiation," adds Dr Billker.

The research was supported by the UK Medical Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>