Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising new water property discovered

13.05.2004


At a microscopic level, water molecules behave rather like the needle of a compass. Just as the needle moves when surrounded by a magnetic field (such as that of the Earth), water molecules move slightly in one direction when there is an electric field. Or at least that is what physicists thought till now. Research at the Universitat Autònoma de Barcelona has shown that, in water trapped in the bubbles of a detergent, it is not quite like that: water molecules have a surprising ability to organize themselves in complex structures, which, when in the presence of the detergent’s electric field (created by the action of certain chemical compounds), organize themselves to cancel this out and even invert it.


Image of computer simulations of water molecules behaviour



Professors Jordi Faraudo of the Department of Physics at the Universitat Autònoma de Barcelona and Fernando Bresme, from London University’s Imperial College, publish this surprising result in Physical Review Letters. Their paper deals with a fascinating discovery on the nature of water that will allow us to better understand complex behaviour such as that of biological membranes.

The research has been carried out by means of simulations, using supercomputers, of the behaviour of water molecules and their interaction with the molecules of a chemical compound frequently used in commercial detergents called SDS. In the simulations, carried out in Europe’s most powerful supercomputer laboratories in Edinburgh, the scientists have observed completely abnormal behaviour.


Current theories led us to believe that the detergent compound SDS acted to produce an electric field around itself by simply orienting neighbouring water molecules without significantly changing the normal properties of water. Thus, it was thought that the molecules aligned themselves with the applied electric field just as a compass needle does in the magnetic field of the Earth. This phenomenon is known as water polarization and is well known by scientists, having important implications for biological and chemical processes related with electrical interactions in water: interaction between membranes, the formation of films and foams, and colloidal stability, among others.

However, the results obtained by this research show that, under certain circumstances, water prefers to behave in a completely abnormal way and to organize itself. In prime films formed by water and SDS (such as those found in foam and bubbles), water molecules are immobilized and cluster together forming special structures, about three molecules thick, around the SDS molecules. Behaving in this way, water manages to completely cancel out the electric field created by the detergent and even to invert it. Hence, to the contrary of what was thought up to now, the action of these detergent chemical compounds is determined mainly by how far water molecules “tolerate” or oppose their presence.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>