Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Surprising new water property discovered


At a microscopic level, water molecules behave rather like the needle of a compass. Just as the needle moves when surrounded by a magnetic field (such as that of the Earth), water molecules move slightly in one direction when there is an electric field. Or at least that is what physicists thought till now. Research at the Universitat Autònoma de Barcelona has shown that, in water trapped in the bubbles of a detergent, it is not quite like that: water molecules have a surprising ability to organize themselves in complex structures, which, when in the presence of the detergent’s electric field (created by the action of certain chemical compounds), organize themselves to cancel this out and even invert it.

Image of computer simulations of water molecules behaviour

Professors Jordi Faraudo of the Department of Physics at the Universitat Autònoma de Barcelona and Fernando Bresme, from London University’s Imperial College, publish this surprising result in Physical Review Letters. Their paper deals with a fascinating discovery on the nature of water that will allow us to better understand complex behaviour such as that of biological membranes.

The research has been carried out by means of simulations, using supercomputers, of the behaviour of water molecules and their interaction with the molecules of a chemical compound frequently used in commercial detergents called SDS. In the simulations, carried out in Europe’s most powerful supercomputer laboratories in Edinburgh, the scientists have observed completely abnormal behaviour.

Current theories led us to believe that the detergent compound SDS acted to produce an electric field around itself by simply orienting neighbouring water molecules without significantly changing the normal properties of water. Thus, it was thought that the molecules aligned themselves with the applied electric field just as a compass needle does in the magnetic field of the Earth. This phenomenon is known as water polarization and is well known by scientists, having important implications for biological and chemical processes related with electrical interactions in water: interaction between membranes, the formation of films and foams, and colloidal stability, among others.

However, the results obtained by this research show that, under certain circumstances, water prefers to behave in a completely abnormal way and to organize itself. In prime films formed by water and SDS (such as those found in foam and bubbles), water molecules are immobilized and cluster together forming special structures, about three molecules thick, around the SDS molecules. Behaving in this way, water manages to completely cancel out the electric field created by the detergent and even to invert it. Hence, to the contrary of what was thought up to now, the action of these detergent chemical compounds is determined mainly by how far water molecules “tolerate” or oppose their presence.

Octavi López Coronado | alfa
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>