Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein keeps cold fish from becoming frozen flounder, new study shows

13.05.2004


’Hyperactive’ antifreeze protein has eluded researchers for more than 30 years



A surprising discovery by Queen’s researchers helps explain why fish swimming in icy sea water don’t freeze.

The team, led by Biochemistry Professor Peter Davies, has identified a new "antifreeze" protein found in the blood of winter flounder enabling the fish to withstand temperatures as low as -1.9 degrees Celsius: the freezing point of sea water. The antifreeze plasma proteins (AFPs) do this by binding irreversibly to ice crystals and preventing them from growing.


Until now, it has been a mystery how these fish survive in polar oceans, since the previously identified "type I" AFP associated with winter flounder only provides 0.7oC of freezing point depression, which in combination with blood solutes, only protects the fish down to -1.5 degrees Celsius.

"This finally explains the ’critical gap’ of 0.4 degrees," says Dr. Davies, a Queen’s Canada Research Chair in Protein Engineering. "The winter flounder has been studied extensively by a number of laboratories over the past 30 years, but this antifreeze protein escaped everyone’s notice. We’re excited to have found it."

The research, conducted with Christopher Marshall from Queen’s Department of Biochemistry and Garth Fletcher from the Ocean Sciences Centre at Memorial University, is published today in the journal Nature.

The team used a process called ice affinity purification to identify the new protein. "When you grow a ’popsicle’ of ice in the presence of these proteins, the AFPs bind to the ice and become included, while other proteins are excluded," explains Mr. Marshall. "Lemon-shaped ice crystals that differed significantly from the hexagon-shaped crystals obtained with type I AFPs told us that we were dealing with an unknown antifreeze protein."

The new protein is extraordinarily active in comparison with other fish antifreeze proteins. At room temperature and at low pH values, however, it loses all activity – perhaps explaining why it remained undetected for three decades. "Prior to this we had only found such hyperactive antifreeze proteins in insects," says Dr. Davies.

Being able to control the growth of ice crystals could have a number of bio-technological and medical applications, the researchers suggest.

AFPs have been tested in the storage of organs and blood products for transplantation, where they offer protection against freezing, improving viability and extending maximum storage periods. They have also been applied in cryosurgery, a technique in which tumor cells are killed by freezing, because AFPs modify the shape of ice crystals into more destructive spicules.

This finding also opens the possibility of transferring genes from winter flounder into salmon, for example, to make them more freeze-resistant for fish farming, or into crops to make them more frost-resistant to extend their growing season. These applications could be realized with concentrations of hyperactive AFPs 10 to 100-fold lower than would be required with the previously discovered fish AFPs.


Funding for the project came from the Canadian Institutes of Health Research (CIHR).

Contacts:
Nancy Dorrance, Queen’s News & Media Services, 613-533-2869.
Lorinda Peterson, Queen’s News & Media Services, 613-533-3234.

Nancy Dorrane | EurekAlert!
Further information:
http://www.queensu.ca/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>