Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical reaction in birds provides sense of direction during migratory flights

13.05.2004


Study could help identify mechanism of magnetoreception in animals and humans



Migrating birds stay on track because of chemical reactions in their bodies that are influenced by the Earth’s magnetic field, a UC Irvine-led team of researchers has found.

The birds are sensitive even to rapidly fluctuating artificial magnetic fields. These fields had no effect on magnetic materials such as magnetite, indicating that the birds do not rely on simple chunks of magnetic material in their beaks or brains to determine direction, as experts had previously suggested.


The results are reported in the May 13 issue of Nature. The study is the first to reveal the mechanism underlying magnetoreception – the ability to detect fluctuations in magnetic fields – in migratory birds.

In the study, Thorsten Ritz, assistant professor of physics and astronomy, and colleagues exposed 12 European robins to artificial, oscillating magnetic fields and monitored the orientation chosen by these birds. The stimuli were specially designed to allow for responses that could differ depending on whether birds used small magnetic particles on their bodies or a magnetically sensitive photochemical reaction to detect the magnetic field.

“We found that the birds faced in the usual direction for their migration when the artificial field was parallel to the Earth’s natural magnetic field, but were confused when the artificial field was applied in a different direction,” said Ritz, the lead author of the paper. “Since the artificial field’s oscillations were too rapid to influence magnetic materials like magnetite, it suggests that the most likely mechanism for magnetic orientation in these birds involves tiny changes to magnetically sensitive chemical reactions, possibly occurring in the eyes of the birds – we are not sure.”

In the experiments, the robins could walk and flutter in their cages but could not fly. The birds oriented well in the Earth’s magnetic field alone, but were disoriented in the presence of a broad-band (0.1-10 megahertz) and 7 megahertz oscillating field, aligned at a 24 or 48 degree angle to the Earth’s magnetic field. When the same 7 megahertz oscillating field was aligned parallel to the Earth’s magnetic field, the robins showed normal migratory orientation again.

“Unlike our senses involving vision, hearing, smell and touch, we do not know what receptors underlie magnetoreception,” Ritz said. “Migratory birds have long been known to possess a magnetic compass that helps them find the correct direction during their migratory flights. It has remained unknown, however, how birds can detect the direction of the Earth’s magnetic field.

“Now, our study points to what we need to look fora molecular substrate for certain chemical reactions. That is, we can rule out magnetic materials in birds’ beaks and elsewhere as being possible candidates. Magnetite in the beaks, however, may play a role in detecting the strength but not the direction of the Earth’s magnetic field.”

The experiments on the birds were conducted in a six-week period in 2003 in Frankfurt, Germany, in the laboratory of Wolfgang and Roswitha Wiltschko, co-authors of the paper, who developed the behavioral experimental setup used in the study for testing magnetic orientation in birds. During migratory unrest, the birds could move in their cages. Each cage was funnel-shaped, lined with coated paper and measured approximately 1.5 feet in diameter. When the birds moved in the cages, they left scratch marks that were counted subsequently by the researchers and analyzed.

To produce artificial oscillating fields, the researchers fed high-frequency currents from a signal generator into a coil that surrounded four test cages. The coil, with a diameter of approximately two meters, could be moved to change the alignment of the oscillating field. Each bird was tested once a day during dusk for a period of approximately 75 minutes.

Besides the Wiltschkos of J. W. Goethe-Universität, Germany, Ritz was joined in the study by John B. Phillips of Virginia Tech and Peter Thalau of J. W. Goethe-Universität.

The research was funded by the Deutsche Forschungsgemeinschaft and the Fetzer Institute.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community. Founded in 1965, UCI is among the fastest-growing University of California campuses, with approximately 24,000 undergraduate and graduate students and about 1,300 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Iqbal Pittalwala | UC Irvine
Further information:
http://today.uci.edu/news/release_detail.asp?key=1151

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>