Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Good guy’ blood cells are now suspects in heart disease, diabetes

12.05.2004


Scientists discover a whole new dimension to platelets



Until recently, the story on platelets was pretty simple: tiny blood cells, with limited sophistication because they had no nucleus, and their claim to fame was to be a first-responder to a wound site, to promote healthy clotting and prevent infection. Later scientists theorized platelets might be connected to harmful chronic inflammation, but the links were unclear.

In a paper published in the prestigious scientific journal Blood, a team of University of Rochester researchers opened a new frontier for platelets. They believe the platelet is the pivotal link between inflammation, heart disease and stroke - and may even be a key cell in the body that promotes diabetic complications, the origin of which remains unknown.


Furthermore, the team found that when platelets change from "good guys" to inflammatory villains, they could be doused with a common Type II diabetes drug that was developed to make tissue more insulin sensitive, but acts as an anti-inflammatory agent on platelets. This finding may offer a new way to use anti-diabetic drugs beyond diabetes treatment, or lead to the development of a new generation of drugs that target platelets.

The results came as a laboratory surprise during a broader investigation of platelets and inflammation, led by corresponding author Richard Phipps, Ph.D., University of Rochester Medical Center professor and director of the Lung Biology and Disease Program. Co-authors include Neil Blumberg, M.D., director of the university’s Strong Memorial Hospital Blood Bank and professor of Pathology and Laboratory Medicine; Charles W. Francis, M.D., an authority on vascular disease and a UR professor of Medicine; graduate student Denise Ray, blood bank specialist Kelly F. Gettings, and Filize Akbiyik, M.D., a visiting scientist.

"Our findings totally shift the way we view platelets," Phipps says. "Normally non-nucleated cells have limited capabilities, but we now believe that platelets are far more complex than was thought."

Chronic inflammation is a major concern in medicine. Doctors are trying to understand, for example, why some individuals suffer heart attacks even though they do not have major heart blockages - and inflammation may be the answer. In fact, many chronic cardiovascular diseases suffered by millions of Americans are linked to inflammation, and scientists are rushing to determine which cells are the culprits.

"This new finding has the potential to be a homerun, in the sense that it suggests a new pathway between inflammation and disease," says Blumberg. "But importantly, it’s a pathway that we know already responds to a licensed drug. To use a spring yard work analogy, it’s like realizing one day that although you’ve been using one tool on your lawn, another one hanging in your garage can dramatically contribute to the job, even though no one would suspect it."

Phipps’ lab specializes in investigating the biomarkers for inflammation. In experiments on human platelet samples, they discovered that platelets express PPARg, a transcription factor that was believed to be expressed only by cells with a nucleus. Activation of the PPARg protein by certain anti-diabetic drugs blunts the ability of platelets to release pro-inflammatory mediators and to form clots. Studies are continuing on how PPARg alters platelet function, and the group hopes to launch clinical research to test whether anti-diabetic drugs dampen the inflammatory activity, and can be used to prevent or treat vascular disease.



Funds for the investigation came from the UR; additional grants from the National Institutes of Health are being sought.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>