Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Good guy’ blood cells are now suspects in heart disease, diabetes

12.05.2004


Scientists discover a whole new dimension to platelets



Until recently, the story on platelets was pretty simple: tiny blood cells, with limited sophistication because they had no nucleus, and their claim to fame was to be a first-responder to a wound site, to promote healthy clotting and prevent infection. Later scientists theorized platelets might be connected to harmful chronic inflammation, but the links were unclear.

In a paper published in the prestigious scientific journal Blood, a team of University of Rochester researchers opened a new frontier for platelets. They believe the platelet is the pivotal link between inflammation, heart disease and stroke - and may even be a key cell in the body that promotes diabetic complications, the origin of which remains unknown.


Furthermore, the team found that when platelets change from "good guys" to inflammatory villains, they could be doused with a common Type II diabetes drug that was developed to make tissue more insulin sensitive, but acts as an anti-inflammatory agent on platelets. This finding may offer a new way to use anti-diabetic drugs beyond diabetes treatment, or lead to the development of a new generation of drugs that target platelets.

The results came as a laboratory surprise during a broader investigation of platelets and inflammation, led by corresponding author Richard Phipps, Ph.D., University of Rochester Medical Center professor and director of the Lung Biology and Disease Program. Co-authors include Neil Blumberg, M.D., director of the university’s Strong Memorial Hospital Blood Bank and professor of Pathology and Laboratory Medicine; Charles W. Francis, M.D., an authority on vascular disease and a UR professor of Medicine; graduate student Denise Ray, blood bank specialist Kelly F. Gettings, and Filize Akbiyik, M.D., a visiting scientist.

"Our findings totally shift the way we view platelets," Phipps says. "Normally non-nucleated cells have limited capabilities, but we now believe that platelets are far more complex than was thought."

Chronic inflammation is a major concern in medicine. Doctors are trying to understand, for example, why some individuals suffer heart attacks even though they do not have major heart blockages - and inflammation may be the answer. In fact, many chronic cardiovascular diseases suffered by millions of Americans are linked to inflammation, and scientists are rushing to determine which cells are the culprits.

"This new finding has the potential to be a homerun, in the sense that it suggests a new pathway between inflammation and disease," says Blumberg. "But importantly, it’s a pathway that we know already responds to a licensed drug. To use a spring yard work analogy, it’s like realizing one day that although you’ve been using one tool on your lawn, another one hanging in your garage can dramatically contribute to the job, even though no one would suspect it."

Phipps’ lab specializes in investigating the biomarkers for inflammation. In experiments on human platelet samples, they discovered that platelets express PPARg, a transcription factor that was believed to be expressed only by cells with a nucleus. Activation of the PPARg protein by certain anti-diabetic drugs blunts the ability of platelets to release pro-inflammatory mediators and to form clots. Studies are continuing on how PPARg alters platelet function, and the group hopes to launch clinical research to test whether anti-diabetic drugs dampen the inflammatory activity, and can be used to prevent or treat vascular disease.



Funds for the investigation came from the UR; additional grants from the National Institutes of Health are being sought.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>