Once a renin cell, always a renin cell

In an unusual but useful example of cellular flip-flop, a new research study demonstrates that multiple cell types have the ability to temporarily switch into renin-secreting cells when they are needed to stabilize blood pressure. The research, published in the May issue of Developmental Cell, demonstrates that the recruited cells are direct descendants of cells that expressed renin at one time during development.

Renin is a hormone released into the blood by specialized cells in the walls of kidney blood vessels. Renin is released in response to sodium depletion and/or low blood pressure in the blood vessels of the kidneys and it plays a major role in regulating blood pressure generally in the body. Adult mammals can increase circulating renin, when necessary, by increasing the number of renin-synthesizing cells. Dr. R. Ariel Gomez from the University of Virginia and colleagues examined whether the ability of adult cells to synthesize renin was dependent on the cells’ original lineage. The researchers generated mice with a genetic marker that allowed visualization of renin-expressing cells even after the cell had differentiated into a non-renin-secreting cell type. Experimental manipulations known to recruit renin-expressing cells demonstrated that adult cells that were descendants of renin cells retained the capability to make renin when more of the hormone was required to stabilize blood pressure.

The researchers conclude that specific subpopulations of apparently differentiated cells are “held in reserve” to repeatedly respond by de-differentiating and expressing renin in response to stress and then re-differentiating when the crisis has passed. According to Dr. Gomez, “The experiments confirm that recruitment of renin-expressing cells is determined by the developmental history of the cells, which retain the memory to re-express the renin gene under physiological stress. The mice we have generated should be extremely valuable to delete genes specifically in the renin-expressing cell and therefore determine the precise cellular function of those genes independently of systemic influences.”

Maria Luisa S. Sequeira Lopez, Ellen S. Pentz, Takayo Nomasa, Oliver Smithies, and R. Ariel Gomez: “Renin Cells Are Precursors for Multiple Cell Types that Switch to the Renin Phenotype When Homeostasis Is Threatened”

Publishing in Developmental Cell, Volume 6, Number 5, May 2004

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.cell.com/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors