Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD bioengineers develop first genome-scale computational model of gene regulation

06.05.2004


Results published in May 6 Issue of Nature



It has taken more than 50 years to accumulate the current body of knowledge on Escherichia coli, a bacterium which is one of the best studied organisms in biology. Now, bioengineers at the University of California San Diego have integrated this knowledge into the first genome-scale model of the gene regulatory system in E. coli. The computational model helps to define the rules governing cell function and quickly enabled an exponential increase in the understanding of the regulatory system in E. coli. Their work, which is published in the May 6, 2004 issue of Nature, represents a new way to systematically drive biological discovery.

"This research is evidence of how much more quickly biological discovery is going to progress now, given that we have high-throughput experimental tools for gathering large volumes of data, and the use of these tools can be guided by computer models," said Bernhard Palsson, professor of bioengineering at the UCSD Jacobs School of Engineering. Palsson co-authored the study with his UCSD bioengineering student Markus Covert, who is now a post-doctoral researcher at the California Institute of Technology.


"We have demonstrated that we can reverse-engineer a cellular regulatory system at the genome scale, and then use that model to systematically gain new knowledge about how the cell functions," said Palsson.

In 2000, Palsson completed an in silico (computational) model of E. coli metabolism that is now being used by scientists worldwide to design and interpret laboratory experiments as well as engineer strains for industrial purposes. In this more recent work, Covert modeled the regulatory network in E. coli representing how the cell responds to environmental cues and expresses genes involved in cellular metabolism. He scoured the scientific literature to reconstruct an E. coli model incorporating all known data about regulatory network components, their functions and their actions.

The UCSD model now includes a network for 1,010 genes, including 104 regulatory genes, whose products together with other molecules regulate the expression of 479 of the 906 genes known to be involved in metabolism.

The team conducted a series of experiments focused on E. coli’s response to oxygen deprivation. They made predictions of cellular behavior through simulations with the in silico model. These predictions guided high-throughput data-gathering experiments using gene chip technology. In the laboratory, the team created strains of E. coli in which genes involved in oxygen regulation were deleted, and then subjected the strains to experiments both with and without oxygen. When the predicted outcomes did not match the experimental outcomes, the experimental data was used to update the in silico model.

Through this process, the team uncovered surprising new details about how E. coli responds to oxygen deprivation.

"We went into the experiments thinking that oxygen regulation is fairly well understood. But in one fell swoop, we identified 115 previously unknown regulatory mechanisms," said Covert. "For example, one interesting finding was that in several cases when a protein that transcribes a gene is active, the expression level of that gene is actually reduced. We also identified new regulatory interactions for genes that no one previously had described, basically opening up a whole new research frontier in terms of characterizing regulatory networks in E. coli."

Another observation by the team was that E. coli’s regulatory network is much more complex than might be expected for such a relatively simple single-cell microbe. And that, Covert says, means that lessons learned through the E. coli modeling process will help scientists model much more advanced organisms such as mice and even humans.

UCSD has filed a patent on the model and is negotiating a license agreement. Palsson’s group at UCSD will continue to develop the E. coli model, and is also beginning to model the regulatory network in yeast, a single-cell organism more closely related to human cells. Meanwhile Covert at Caltech is focusing on signaling transduction pathways in the mouse.

In addition to Palsson and Covert, the other researchers involved in the study include Eric M. Knight, Jennifer L. Reed, and Markus J. Herrgard.


Funding was provided through the National Institutes of Health.

Denine Hagen | EurekAlert!
Further information:
http://gcrg.ucsd.edu/
http://www.jacobsschool.ucsd.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>