Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD bioengineers develop first genome-scale computational model of gene regulation

06.05.2004


Results published in May 6 Issue of Nature



It has taken more than 50 years to accumulate the current body of knowledge on Escherichia coli, a bacterium which is one of the best studied organisms in biology. Now, bioengineers at the University of California San Diego have integrated this knowledge into the first genome-scale model of the gene regulatory system in E. coli. The computational model helps to define the rules governing cell function and quickly enabled an exponential increase in the understanding of the regulatory system in E. coli. Their work, which is published in the May 6, 2004 issue of Nature, represents a new way to systematically drive biological discovery.

"This research is evidence of how much more quickly biological discovery is going to progress now, given that we have high-throughput experimental tools for gathering large volumes of data, and the use of these tools can be guided by computer models," said Bernhard Palsson, professor of bioengineering at the UCSD Jacobs School of Engineering. Palsson co-authored the study with his UCSD bioengineering student Markus Covert, who is now a post-doctoral researcher at the California Institute of Technology.


"We have demonstrated that we can reverse-engineer a cellular regulatory system at the genome scale, and then use that model to systematically gain new knowledge about how the cell functions," said Palsson.

In 2000, Palsson completed an in silico (computational) model of E. coli metabolism that is now being used by scientists worldwide to design and interpret laboratory experiments as well as engineer strains for industrial purposes. In this more recent work, Covert modeled the regulatory network in E. coli representing how the cell responds to environmental cues and expresses genes involved in cellular metabolism. He scoured the scientific literature to reconstruct an E. coli model incorporating all known data about regulatory network components, their functions and their actions.

The UCSD model now includes a network for 1,010 genes, including 104 regulatory genes, whose products together with other molecules regulate the expression of 479 of the 906 genes known to be involved in metabolism.

The team conducted a series of experiments focused on E. coli’s response to oxygen deprivation. They made predictions of cellular behavior through simulations with the in silico model. These predictions guided high-throughput data-gathering experiments using gene chip technology. In the laboratory, the team created strains of E. coli in which genes involved in oxygen regulation were deleted, and then subjected the strains to experiments both with and without oxygen. When the predicted outcomes did not match the experimental outcomes, the experimental data was used to update the in silico model.

Through this process, the team uncovered surprising new details about how E. coli responds to oxygen deprivation.

"We went into the experiments thinking that oxygen regulation is fairly well understood. But in one fell swoop, we identified 115 previously unknown regulatory mechanisms," said Covert. "For example, one interesting finding was that in several cases when a protein that transcribes a gene is active, the expression level of that gene is actually reduced. We also identified new regulatory interactions for genes that no one previously had described, basically opening up a whole new research frontier in terms of characterizing regulatory networks in E. coli."

Another observation by the team was that E. coli’s regulatory network is much more complex than might be expected for such a relatively simple single-cell microbe. And that, Covert says, means that lessons learned through the E. coli modeling process will help scientists model much more advanced organisms such as mice and even humans.

UCSD has filed a patent on the model and is negotiating a license agreement. Palsson’s group at UCSD will continue to develop the E. coli model, and is also beginning to model the regulatory network in yeast, a single-cell organism more closely related to human cells. Meanwhile Covert at Caltech is focusing on signaling transduction pathways in the mouse.

In addition to Palsson and Covert, the other researchers involved in the study include Eric M. Knight, Jennifer L. Reed, and Markus J. Herrgard.


Funding was provided through the National Institutes of Health.

Denine Hagen | EurekAlert!
Further information:
http://gcrg.ucsd.edu/
http://www.jacobsschool.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>