Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings redefine mechanism of action of RNA helicase enzymes


If DNA can be compared to an architect who gets all the glory for designing the building, RNA can be compared to the engineer who often goes unrecognized, but is needed to turn the blueprints into a real three-dimensional, functional and safe structure. RNA has numerous functions in a cell, including translating the genetic blueprints found in DNA and catalyzing reactions in the cell to build proteins.

In order to carry out its functions, strands of RNA molecules will bind with other RNA molecules, making double-stranded RNA, or will bind with proteins, making RNA-protein complexes, or RNPs.

Wherever RNA occurs in the cell, ubiquitous RNA helicase enzymes are responsible for rearrangements of such complexes. RNA helicases are proteins that burn the universal cellular fuel molecule ATP and use the energy gained from this reaction to unwind double-stranded RNA. It has long been assumed that these enzymes, essential for all aspects of RNA metabolism, exclusively unwind double-stranded RNA.

In a new paper published in the April 30 issue of the journal Science, a group of researchers from the Case Western Reserve University School of Medicine provide fundamental new insight into the function of RNA helicases (also called DExH/D-RNA helicases). The paper is titled "Protein Displacement by DExH/D ’RNA Helicases’ Without Duplex Unwinding."

"We provide direct evidence that these enzymes can utilize energy gained from burning ATP to change shape and composition of RNA-protein complexes without unwinding RNA duplexes," said senior author Eckhard Jankowsky, Ph.D., assistant professor of biochemistry at Case.

"We show that two different RNA helicases can displace proteins from single-stranded RNA and that duplexes do not necessarily need to be disrupted by the enzymes during their myriad biological functions. The findings essentially redefine the mechanism of action of RNA helicases and constitute a paradigm shift in assessing roles of these enzymes in virtually all biological processes that involve RNA."

In an accompanying perspective article, Patrick Linder of the Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland, writes, "Their findings provide new insights into the dynamic rearrangements that take place in RNPs [RNA-protein complexes], and the mechanism of RNA duplex unwinding by RNA helicases."

The work was conducted in the Department of Biochemistry and the Center for RNA Molecular Biology by Jankowsky’s group in collaboration with a laboratory group of Timothy Nilsen, Ph.D., director of the RNA Center at Case. The other authors are, from the Department of Biochemistry, Margaret E. Fairman, Wen Wang, and Heath A. Bowers, and, from the RNA Center, Patricia A. Maroney, as well as, from the Department of Biological Sciences, State University of New York at Buffalo, Paul Gollnick.

George Stamatis | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>