Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings redefine mechanism of action of RNA helicase enzymes

06.05.2004


If DNA can be compared to an architect who gets all the glory for designing the building, RNA can be compared to the engineer who often goes unrecognized, but is needed to turn the blueprints into a real three-dimensional, functional and safe structure. RNA has numerous functions in a cell, including translating the genetic blueprints found in DNA and catalyzing reactions in the cell to build proteins.



In order to carry out its functions, strands of RNA molecules will bind with other RNA molecules, making double-stranded RNA, or will bind with proteins, making RNA-protein complexes, or RNPs.

Wherever RNA occurs in the cell, ubiquitous RNA helicase enzymes are responsible for rearrangements of such complexes. RNA helicases are proteins that burn the universal cellular fuel molecule ATP and use the energy gained from this reaction to unwind double-stranded RNA. It has long been assumed that these enzymes, essential for all aspects of RNA metabolism, exclusively unwind double-stranded RNA.


In a new paper published in the April 30 issue of the journal Science, a group of researchers from the Case Western Reserve University School of Medicine provide fundamental new insight into the function of RNA helicases (also called DExH/D-RNA helicases). The paper is titled "Protein Displacement by DExH/D ’RNA Helicases’ Without Duplex Unwinding."

"We provide direct evidence that these enzymes can utilize energy gained from burning ATP to change shape and composition of RNA-protein complexes without unwinding RNA duplexes," said senior author Eckhard Jankowsky, Ph.D., assistant professor of biochemistry at Case.

"We show that two different RNA helicases can displace proteins from single-stranded RNA and that duplexes do not necessarily need to be disrupted by the enzymes during their myriad biological functions. The findings essentially redefine the mechanism of action of RNA helicases and constitute a paradigm shift in assessing roles of these enzymes in virtually all biological processes that involve RNA."

In an accompanying perspective article, Patrick Linder of the Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland, writes, "Their findings provide new insights into the dynamic rearrangements that take place in RNPs [RNA-protein complexes], and the mechanism of RNA duplex unwinding by RNA helicases."


The work was conducted in the Department of Biochemistry and the Center for RNA Molecular Biology by Jankowsky’s group in collaboration with a laboratory group of Timothy Nilsen, Ph.D., director of the RNA Center at Case. The other authors are, from the Department of Biochemistry, Margaret E. Fairman, Wen Wang, and Heath A. Bowers, and, from the RNA Center, Patricia A. Maroney, as well as, from the Department of Biological Sciences, State University of New York at Buffalo, Paul Gollnick.

George Stamatis | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>