Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings redefine mechanism of action of RNA helicase enzymes

06.05.2004


If DNA can be compared to an architect who gets all the glory for designing the building, RNA can be compared to the engineer who often goes unrecognized, but is needed to turn the blueprints into a real three-dimensional, functional and safe structure. RNA has numerous functions in a cell, including translating the genetic blueprints found in DNA and catalyzing reactions in the cell to build proteins.



In order to carry out its functions, strands of RNA molecules will bind with other RNA molecules, making double-stranded RNA, or will bind with proteins, making RNA-protein complexes, or RNPs.

Wherever RNA occurs in the cell, ubiquitous RNA helicase enzymes are responsible for rearrangements of such complexes. RNA helicases are proteins that burn the universal cellular fuel molecule ATP and use the energy gained from this reaction to unwind double-stranded RNA. It has long been assumed that these enzymes, essential for all aspects of RNA metabolism, exclusively unwind double-stranded RNA.


In a new paper published in the April 30 issue of the journal Science, a group of researchers from the Case Western Reserve University School of Medicine provide fundamental new insight into the function of RNA helicases (also called DExH/D-RNA helicases). The paper is titled "Protein Displacement by DExH/D ’RNA Helicases’ Without Duplex Unwinding."

"We provide direct evidence that these enzymes can utilize energy gained from burning ATP to change shape and composition of RNA-protein complexes without unwinding RNA duplexes," said senior author Eckhard Jankowsky, Ph.D., assistant professor of biochemistry at Case.

"We show that two different RNA helicases can displace proteins from single-stranded RNA and that duplexes do not necessarily need to be disrupted by the enzymes during their myriad biological functions. The findings essentially redefine the mechanism of action of RNA helicases and constitute a paradigm shift in assessing roles of these enzymes in virtually all biological processes that involve RNA."

In an accompanying perspective article, Patrick Linder of the Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland, writes, "Their findings provide new insights into the dynamic rearrangements that take place in RNPs [RNA-protein complexes], and the mechanism of RNA duplex unwinding by RNA helicases."


The work was conducted in the Department of Biochemistry and the Center for RNA Molecular Biology by Jankowsky’s group in collaboration with a laboratory group of Timothy Nilsen, Ph.D., director of the RNA Center at Case. The other authors are, from the Department of Biochemistry, Margaret E. Fairman, Wen Wang, and Heath A. Bowers, and, from the RNA Center, Patricia A. Maroney, as well as, from the Department of Biological Sciences, State University of New York at Buffalo, Paul Gollnick.

George Stamatis | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>