Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study finds protein in male reproductive tract kills bacteria, may improve fertility

06.05.2004


Scientists at the University of North Carolina at Chapel Hill have found that a protein they discovered three years ago in the male reproductive tract is a potent anti-bacterial agent.



In addition to protecting the male against invading bacteria, the protein may aid fertilization by protecting sperm from harmful organisms encountered in the female reproductive tract.

A report of the study, now online, will be published in the July issue of the journal Endocrinology. Designated DEFB118, the protein is found in the epididymis, a coiled duct through which sperm pass after leaving the testis. During passage through the epididymis, sperm become mature and acquire forward motility and fertilizing ability.


DEFB118 may be important in the innate immune system, said Dr. Susan H. Hall, associate professor of pediatrics in the UNC School of Medicine’s Laboratories for Reproductive Biology.

"Antibodies for protection may not be present when a pathogen comes in, so we need an innate defense system, something right there and ready to go," Hall added.

A wide variety of anti-microbial proteins in different classes have been identified in species as diverse as insects and humans. The most abundant antibiotic proteins in humans are the defensins. "This study demonstrates that the sperm-binding protein we discovered is an active defensin, one that has potent antibacterial activity," Hall said.

In humans, defensins are produced in the skin, eyes, nose, ears, mouth, digestive system, lungs and reproductive tract.

"When a pathogen tries to enter our bodies, defensins are ready and waiting there to kill them," Hall said. "And if the defensins are overpowered, then other protective mechanisms including antibodies are called in to finish the job."

Hall’s laboratory first reported the new sperm-binding defensin, identified by graduate student Liu Qiang, in 2001. The protein may be a broad-spectrum anti-microbial that attacks and destroys a variety of bacteria, said UNC postdoctoral researcher Dr. Suresh Yenuga, the new report’s lead author.

"This protein kills bacteria by disrupting their outer and inner cell membranes, resulting in the release of cell contents," he said. "In treating E. coli with different concentrations of DEFB118 over different time periods, we found it kills the bacteria within 15 minutes. Its anti-bacterial activity is dose-, time- and structure-dependent."

Study co-author and UNC postdoctoral researcher Dr. Yashwanth Radhakrishnan is exploring the evolutionary significance of defensin genes, how they evolved in the human genome. Numerous proteins similar in key attributes exist in different mammalian species, he said.

"We have already found homologues in monkeys, mouse and rat. The cluster of genes we’re studying is 100 million years old," he said. "Do they have multiple functions or the same function? Are there differences in their mechanisms of action? Across species, we still have no data on function, or on what species of bacteria or viruses they kill. We hope to find some answers."

The Laboratories for Reproductive Biology, established more than 30 years ago, includes faculty in the departments of biochemistry and biophysics, cell and developmental biology, genetics, cell and molecular physiology, obstetrics and gynecology, and pediatrics. The LRB promotes understanding of normal and abnormal reproductive functions to discover new methods of treating infertility and develop new methods of fertility control.


LRB research is supported by grants from the National Institute of Child Health and Human Development, the NIH Fogarty International Center, the Contraceptive Research and Development Program, the Andrew W. Mellon Foundation and the Specialized Cooperative Centers Program in Reproduction Research at the NIH.

Leslie H. Lang | UNC
Further information:
http://www.unc.edu/news/newsserv/archives/may04/lrb050504.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>