Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study finds protein in male reproductive tract kills bacteria, may improve fertility

06.05.2004


Scientists at the University of North Carolina at Chapel Hill have found that a protein they discovered three years ago in the male reproductive tract is a potent anti-bacterial agent.



In addition to protecting the male against invading bacteria, the protein may aid fertilization by protecting sperm from harmful organisms encountered in the female reproductive tract.

A report of the study, now online, will be published in the July issue of the journal Endocrinology. Designated DEFB118, the protein is found in the epididymis, a coiled duct through which sperm pass after leaving the testis. During passage through the epididymis, sperm become mature and acquire forward motility and fertilizing ability.


DEFB118 may be important in the innate immune system, said Dr. Susan H. Hall, associate professor of pediatrics in the UNC School of Medicine’s Laboratories for Reproductive Biology.

"Antibodies for protection may not be present when a pathogen comes in, so we need an innate defense system, something right there and ready to go," Hall added.

A wide variety of anti-microbial proteins in different classes have been identified in species as diverse as insects and humans. The most abundant antibiotic proteins in humans are the defensins. "This study demonstrates that the sperm-binding protein we discovered is an active defensin, one that has potent antibacterial activity," Hall said.

In humans, defensins are produced in the skin, eyes, nose, ears, mouth, digestive system, lungs and reproductive tract.

"When a pathogen tries to enter our bodies, defensins are ready and waiting there to kill them," Hall said. "And if the defensins are overpowered, then other protective mechanisms including antibodies are called in to finish the job."

Hall’s laboratory first reported the new sperm-binding defensin, identified by graduate student Liu Qiang, in 2001. The protein may be a broad-spectrum anti-microbial that attacks and destroys a variety of bacteria, said UNC postdoctoral researcher Dr. Suresh Yenuga, the new report’s lead author.

"This protein kills bacteria by disrupting their outer and inner cell membranes, resulting in the release of cell contents," he said. "In treating E. coli with different concentrations of DEFB118 over different time periods, we found it kills the bacteria within 15 minutes. Its anti-bacterial activity is dose-, time- and structure-dependent."

Study co-author and UNC postdoctoral researcher Dr. Yashwanth Radhakrishnan is exploring the evolutionary significance of defensin genes, how they evolved in the human genome. Numerous proteins similar in key attributes exist in different mammalian species, he said.

"We have already found homologues in monkeys, mouse and rat. The cluster of genes we’re studying is 100 million years old," he said. "Do they have multiple functions or the same function? Are there differences in their mechanisms of action? Across species, we still have no data on function, or on what species of bacteria or viruses they kill. We hope to find some answers."

The Laboratories for Reproductive Biology, established more than 30 years ago, includes faculty in the departments of biochemistry and biophysics, cell and developmental biology, genetics, cell and molecular physiology, obstetrics and gynecology, and pediatrics. The LRB promotes understanding of normal and abnormal reproductive functions to discover new methods of treating infertility and develop new methods of fertility control.


LRB research is supported by grants from the National Institute of Child Health and Human Development, the NIH Fogarty International Center, the Contraceptive Research and Development Program, the Andrew W. Mellon Foundation and the Specialized Cooperative Centers Program in Reproduction Research at the NIH.

Leslie H. Lang | UNC
Further information:
http://www.unc.edu/news/newsserv/archives/may04/lrb050504.html

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>