Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat cells heal skull defects in mice, Stanford research shows

05.05.2004


Certain types of cells from fat tissue can repair skull defects in mice, say researchers at Stanford University Medical Center. Because this type of healing process does not depend on the use of embryonic stem cells or gene therapy, it may one day allow doctors to use a patient’s own unmodified cells as building blocks to heal fractures, replace joints, treat osteoporosis or correct defects in bone growth or healing.

"These cells are from you, for you and by you," said Lucile Packard Children’s Hospital pediatric craniofacial surgeon Michael Longaker, MD. "They are not foreign and they don’t express foreign genes. To our knowledge, this is the first time these cells have ever been shown to have a therapeutic effect." Longaker, a professor of surgery at Stanford’s School of Medicine, is the senior author of the research, published in the May issue of Nature Biotechnology.

"Fat is a great natural resource," he added. "These cells are not only easily harvested, they grow quickly in the laboratory." In contrast, bone marrow cells and bone cells, both of which can also repair skull damage, grow very slowly outside of the body.



Longaker and his colleagues have spent several years investigating the special qualities of the fat-derived cells, which are isolated from fat pockets under the skin of juvenile or adult animals. They’ve found that the cells, also known as multipotent cells, can be coaxed in the laboratory to express the genes and characteristics of many other tissue types, including bone, cartilage and muscle cells. But it was not known if these cells are equally versatile within the body.

In the study, researchers implanted the cells, seeded on a bonelike scaffolding, into defects that would not otherwise heal in the skulls of mice. They assessed new bone formation after two and 12 weeks, finding that the fat-derived cells were just as effective as the more finicky bone marrow cells at synthesizing new bone to bridge the defect. In contrast, cells derived from tissue that covers the brain showed no bone growth during the same time period.

The new bone growth began next to the brain, suggesting those cells were sending out bone growth-promoting signals and emphasizing the importance of the local environment in determining cell fate.

"The analogy is one of seeds and soil," said Longaker. "The cells are the seeds, and the soil that enables them to form bone consists of the scaffolding and the signals of neighboring cells."

Because more than 95 percent of the new bone growth was made up of implanted cells, researchers speculate the fat-derived cells either became bone themselves, as they have done in the laboratory, or fused with existing bone-making cells in the host to spur new growth.

If the researchers’ findings can be reproduced in humans, they may lead to new, more effective and biologically gentle ways to promote healing of tricky fractures and skeletal defects.

"After age 2, you don’t re-engineer a defect in your skull," said Longaker. "Currently, surgeons use bone grafts from the patient’s ribs or split other parts of the skull horizontally to gain enough bone to cover the area. Alternatively, they can rely on plastic or metal inserts. But all of these options can give you problems with infection and healing, and can be invasive and technically difficult."

Other conditions that might benefit from the use of the multipotent cells include joint replacement, spinal fusion, osteoporosis and osteomyelitis, a bacterial infection of the bone.

"As more people are active in sports and live longer, the wear and tear on joints is obvious," said Longaker. "The non-human tissue we use to replace joints may last 10 to 20 years if it’s well integrated. Our hope is that we could do better by replacing that with your own tissue. The key to this type of regenerative medicine is to understand the developmental biology of skeleton formation during embryogenesis, and figuring out how to release those same coaching signals in children and adults.

"These cells are readily available, easily expandable and they don’t require gene therapy to work," he added. "In the future we may not have to leave the operating room or the patient’s bedside to use cell-based therapies for skeletal regenerative medicine."



The work was supported by a grant from the Oak Foundation and the National Institutes of Health.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Lucile Packard Children’s Hospital at Stanford is a 256-bed hospital devoted to the care of children and expectant mothers. Providing pediatric and obstetric medical and surgical services and associated with Stanford University School of Medicine, Packard offers patients locally, regionally and nationally the full range of health-care programs and services - from preventive and routine care to the diagnosis and treatment of serious illness and injury. To learn more about Lucile Packard Children’s Hospital at Stanford, please visit http://www.lpch.org.

Robert Dicks | Stanford University Medical C.
Further information:
http://mednews.stanford.edu/releases/2004/may/bonefuse.htm
http://www.lpch.org
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>