Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving the mind’s eye depends upon an intact eye movement system

04.05.2004


An important aspect of human vision is the ability to attend to objects or events appearing in our peripheral vision without shifting our gaze. This way of effectively looking out of the corner of the mind’s eye is thought to be particularly important for alerting us to danger. Researchers have made the seemingly paradoxical discovery that even though eye movement itself is actually dispensable for such an attention shift, eye muscle function is nevertheless required for this ability to reflexively redirect one’s attention. The new finding tests an important theory about brain function, and represents a remarkable example of the brain’s complex relationship with movement.



The ability to attend to objects or events that are not at the current centre of gaze (e.g., rapid movements which might signal danger) is referred to as the covert orienting of attention. This mechanism can be contrasted with the overt orienting of attention which typically involves the execution of an eye movement (saccade) intended to bring the object of interest into central vision.

In their new work, researchers Daniel Smith, Chris Rorden and Stephen Jackson of the University of Nottingham, UK, address an important question concerning the precise relationship between eye movements and the covert orienting of attention. While some have argued that covert orienting of attention and eye movements are independent of one another, other researchers have supported the so-called "premotor theory" of attention, which holds that covert attention is mediated by the same system that controls saccadic eye movements, and that a covert shift of attention is simply an unexecuted eye movement.


In a novel test of the premotor hypothesis, Smith and colleagues investigated the covert orienting of attention by a woman (AI) who, because of a congenital impairment in the development of her eye muscles (opthalmoplegia), had never been able to make an eye movement, but could read and scan the visual world by making saccadic head movements.

The researchers found that in contrast to individuals who possessed the ability to move their eyes, AI could not reflexively orient her attention in response to the appearance of a salient peripheral cue. Nevertheless she had no problem orienting her attention voluntarily in response to centrally presented direction cues (i.e., an arrow pointing left or right).

The results demonstrate that intact eye movements are necessary for the normal development of reflexive attention. They also show that, contrary to what one might expect, intact brain regions alone are not sufficient for the normal development of attention. Together the new findings provide strong support for the premotor theory of attention.


Daniel T. Smith, Chris Rorden, and Stephen R. Jackson : "Exogenous Orienting of Attention Depends upon the Ability to Execute Eye Movements"

Publishing in Current Biology, Volume 14, Number 9, May 4, 2004.

Heidi Hardman | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>