Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unnatural light-dark cycles expose duelling circadian clocks


In mammals, the endogenous daily pacemaker that regulates circadian rhythms like sleep and wakefulness is localized to a defined site in the brain, the suprachiasmatic nucleus (SCN), which is composed of many neurons whose circadian activities are in synchrony with one another. By exposing rats to a very short day/night schedule – a regimen that effectively pushes the limits of the SCN’s ability to set the clock to day length – researchers have discovered within the SCN two sub-clocks that normally oscillate in unison, but can become disconnected from one another as a result of artificial day/night cycles. One clock followed the artificially short 11-hr. day/11-hr. night schedule, while the other followed a longer cycle (>24 hrs.), but both clocks controlled behavioral rhythms within an individual animal.

The researchers, Horacio de la Iglesia and William Schwartz of the University of Massachusetts Medical School in Worcester, collaborating with Trinitat Cambras and Antoni Díez-Noguera of the University of Barcelona, found that the two locomotor activity rhythms reflected the separate oscillating activities of two areas within the SCN – essentially the top and bottom halves – that correspond to previously described anatomical subdivisions.

The results add to a growing awareness that it is a network of multiple oscillators, not only throughout the brain and body but also within the SCN itself, that underlies the workings of the circadian timing system. In humans, some of the symptoms arising from jet lag or rotating work schedules might not be due to the desynchronization between the central brain pacemaker and downstream oscillators in the body, but rather from the uncoupling of oscillators within the central pacemaker itself.

Horacio O. de la Iglesia, Trinitat Cambras, William J. Schwartz, and Antoni Díez-Noguera: "Forced Desynchronization of Dual Circadian Oscillators Within the Rat Suprachiasmatic Nucleus"

Publishing in Current Biology, Volume 14, Number 9 May 4, 2004.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>