Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unnatural light-dark cycles expose duelling circadian clocks

04.05.2004


In mammals, the endogenous daily pacemaker that regulates circadian rhythms like sleep and wakefulness is localized to a defined site in the brain, the suprachiasmatic nucleus (SCN), which is composed of many neurons whose circadian activities are in synchrony with one another. By exposing rats to a very short day/night schedule – a regimen that effectively pushes the limits of the SCN’s ability to set the clock to day length – researchers have discovered within the SCN two sub-clocks that normally oscillate in unison, but can become disconnected from one another as a result of artificial day/night cycles. One clock followed the artificially short 11-hr. day/11-hr. night schedule, while the other followed a longer cycle (>24 hrs.), but both clocks controlled behavioral rhythms within an individual animal.



The researchers, Horacio de la Iglesia and William Schwartz of the University of Massachusetts Medical School in Worcester, collaborating with Trinitat Cambras and Antoni Díez-Noguera of the University of Barcelona, found that the two locomotor activity rhythms reflected the separate oscillating activities of two areas within the SCN – essentially the top and bottom halves – that correspond to previously described anatomical subdivisions.

The results add to a growing awareness that it is a network of multiple oscillators, not only throughout the brain and body but also within the SCN itself, that underlies the workings of the circadian timing system. In humans, some of the symptoms arising from jet lag or rotating work schedules might not be due to the desynchronization between the central brain pacemaker and downstream oscillators in the body, but rather from the uncoupling of oscillators within the central pacemaker itself.



Horacio O. de la Iglesia, Trinitat Cambras, William J. Schwartz, and Antoni Díez-Noguera: "Forced Desynchronization of Dual Circadian Oscillators Within the Rat Suprachiasmatic Nucleus"

Publishing in Current Biology, Volume 14, Number 9 May 4, 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>