Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular mechanism found that may improve ability of stem cells to fight disease

04.05.2004


Findings published in current issue of Nature Cell Biology



Adult stem cell transplantation offers great therapeutic potential for a variety of diseases due to their ability to replenish diseased cells and tissue. While they are unique in this ability, it remains a challenge to effectively treat disease long-term with stem cells because of our inability to grow them in the laboratory. Defining the molecular switch in the stem cell replication process, or cell cycle, is a key step to stimulating their growth for broader clinical use.

In the May issue of Nature Cell Biology, Tao Cheng, M.D., assistant professor, department of radiation oncology, University of Pittsburgh School of Medicine, and colleagues report the discovery of a molecular mechanism in the cell cycle that appears to impact the replicating ability of stem cells from bone marrow and blood to fight disease. They found that blood stem cells from mice missing a gene called p18 were much better able to multiply and grow. p18 is a molecule in a class of so-called "cyclin-dependent kinase inhibitors" that are critical inhibitors of cell cycle control.


In the study, Dr. Cheng and his team isolated p18-deficient stem cells from mice and found that these cells were much more efficient at repopulating injured bone marrow tissue. As a result, they concluded that blocking the function of p18 may be a productive way to enhance the efficacy of stem cell transplantation as a treatment for diseases.

"Stem cells have great potential, but we need to develop novel strategies to help them proliferate to better fight diseases," said Dr. Cheng, also stem cell biologist at the University of Pittsburgh Cancer Institute. "By using stem cells deficient in p18, we found a strikingly improved long-term engraftment of stem cells in bone marrow leading us to the conclusion that p18 is a strong inhibitor to stem cell self-renewal. This is an exciting finding because it may lead to a new medical invention that can improve the ability of stem cells to self-renew, and thus, more effectively treat a wide range of diseases including cancer."

Stem cells give rise to blood cells with various essential functions, from carrying oxygen to providing immunity against disease. Preserving the function of stem cells and correcting any defects is essential to fighting disease and maintaining health. Stem cell transplantation is a common treatment for patients with advanced or recurrent cancers of the blood, such as leukemia and lymphoma.

The study was funded in part by grants from the National Institutes of Health. Co-first-authors include Youzhong Yuan, M.D., Ph.D., and Hongmei Shen, Ph.D., at the University of Pittsburgh Cancer Institute. Other collaborators and co-authors include David S. Franklin, Ph.D., Purdue University and David T. Scadden, M.D., Massachusetts General Hospital and Harvard Medical School.


ADDITIONAL CONTACT:
Michele Baum
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: BaumMD@upmc.edu

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>