Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular mechanism found that may improve ability of stem cells to fight disease

04.05.2004


Findings published in current issue of Nature Cell Biology



Adult stem cell transplantation offers great therapeutic potential for a variety of diseases due to their ability to replenish diseased cells and tissue. While they are unique in this ability, it remains a challenge to effectively treat disease long-term with stem cells because of our inability to grow them in the laboratory. Defining the molecular switch in the stem cell replication process, or cell cycle, is a key step to stimulating their growth for broader clinical use.

In the May issue of Nature Cell Biology, Tao Cheng, M.D., assistant professor, department of radiation oncology, University of Pittsburgh School of Medicine, and colleagues report the discovery of a molecular mechanism in the cell cycle that appears to impact the replicating ability of stem cells from bone marrow and blood to fight disease. They found that blood stem cells from mice missing a gene called p18 were much better able to multiply and grow. p18 is a molecule in a class of so-called "cyclin-dependent kinase inhibitors" that are critical inhibitors of cell cycle control.


In the study, Dr. Cheng and his team isolated p18-deficient stem cells from mice and found that these cells were much more efficient at repopulating injured bone marrow tissue. As a result, they concluded that blocking the function of p18 may be a productive way to enhance the efficacy of stem cell transplantation as a treatment for diseases.

"Stem cells have great potential, but we need to develop novel strategies to help them proliferate to better fight diseases," said Dr. Cheng, also stem cell biologist at the University of Pittsburgh Cancer Institute. "By using stem cells deficient in p18, we found a strikingly improved long-term engraftment of stem cells in bone marrow leading us to the conclusion that p18 is a strong inhibitor to stem cell self-renewal. This is an exciting finding because it may lead to a new medical invention that can improve the ability of stem cells to self-renew, and thus, more effectively treat a wide range of diseases including cancer."

Stem cells give rise to blood cells with various essential functions, from carrying oxygen to providing immunity against disease. Preserving the function of stem cells and correcting any defects is essential to fighting disease and maintaining health. Stem cell transplantation is a common treatment for patients with advanced or recurrent cancers of the blood, such as leukemia and lymphoma.

The study was funded in part by grants from the National Institutes of Health. Co-first-authors include Youzhong Yuan, M.D., Ph.D., and Hongmei Shen, Ph.D., at the University of Pittsburgh Cancer Institute. Other collaborators and co-authors include David S. Franklin, Ph.D., Purdue University and David T. Scadden, M.D., Massachusetts General Hospital and Harvard Medical School.


ADDITIONAL CONTACT:
Michele Baum
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: BaumMD@upmc.edu

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>