Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe long-perplexing ’magic spot’ on bacteria

30.04.2004


Scientists have unraveled the behavior of one key component of bacteria, a finding that may lead to better, more effective antibiotics.


Irina Artsimovitch



The researchers studied a mechanism of action they call the "magic spot" – an important regulator of gene expression. They describe their results in the current issue of the journal Cell.

Researchers know that the magic spot – a molecule known as guanosine-tetraphosphate or ppGpp – is involved in how bacteria respond to amino acid starvation. More recently, researchers have discovered that ppGpp is an important part of pathogens that cause illnesses such as cholera and Legionnaires’ disease.


A cell makes ppGpp when amino acid levels are low.

"Microbiologists have wondered for a half-century how this small molecule with a relatively simple structure could have such a profound effect on regulating a cell’s survival," said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University. She collaborated on this work with study lead author Dmitry Vassylyev, of the RIKEN Institute in Japan.

ppGpp controls what researchers call the "stringent response" – a condition of nutritional starvation. When amino acid pools in a cell are exhausted, ppGpp accumulates and shuts down the synthesis of new proteins. The cell goes dormant until amino acid levels return to normal.

By learning the structure of ppGpp and how it interacts with the enzyme RNA polymerase – the main enzyme that controls gene expression in a cell – the researchers were able to describe in detail the "magic" behind the magic spot, Artsimovitch said.

"This study sheds a good deal of light on the inner workings of the molecular machinery that carries out gene expression in bacteria," she said. "Knowing this can serve as a basis for a new type of antibiotics.

In related work reported in a recent issue of the Journal of Bacteriology, Artsimovitch led a team of researchers in learning how a protein that is specific to illness-causing bacteria might provide another potential path to developing antibiotics against bacteria that cause cholera, pneumonia and food poisoning.

This protein, called RfaH, regulates virulence – a bacterium’s ability to cause disease – in pathogens such as Escherichia coli and Salmonella enterica, bacteria that cause food poisoning in humans.

Artsimovitch and her colleagues identified previously overlooked RfaH genes in other bacterial pathogens, such as those that cause cholera and bubonic plague.

"Not only do RfaH proteins from different bacteria look similar, they act similar, too," she said.

Without RfaH, enterobacteria can’t cause disease, Artsimovitch said. It’s plausible that drug developers could design an antibiotic that knocks out RfaH, effectively shutting down a bacterium’s virulence.

"We’re trying to give the scientists who work on these pathogens detailed models of RfaH and ppGpp behavior," Artsimovitch said. "That may lead to better-targeted antibiotics that can really be effective against these diseases."

Support for these studies came from the American Heart Association and the National Institutes of Health.

Artsimovitch and Vassylyev conducted the work reported in Cell with researchers from the RIKEN Harima Institute in Hyogo, Japan; the RIKEN Genomic Sciences Center in Yokohama, Japan; the National Food Research Institute in Ibaraki, Japan; and the University of Tokyo. Artsimovitch conducted the work reported in the Journal of Bacteriology with Ohio State researchers Heather Carter and Vladimir Svetlov.


Contact: Irina Artsimovitch, (614) 292-6777;
Artsimovitch.1@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/shutbac.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>