Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique plucks rapidly evolving genes from a pathogen’s genome

30.04.2004


A quick new technique able to identify genes that evolve rapidly as well as those that change slowly already has pinpointed new targets for researchers developing drugs against tuberculosis and malaria, and it could do the same for other infectious diseases, according to a paper in this week’s Nature.



The technique, reported in the April 29 issue of the journal, was developed by researchers from the University of California, Berkeley, Harvard and Princeton universities, and the National Institutes of Health.

Genes that change slowly or not at all in an organism, or from one organism to another, usually turn out to be critical pieces of molecular machinery and, in an infectious organism, attractive targets for researchers hoping to kill it


Alternatively, genes that change rapidly are presumed to be under selective evolutionary pressure, such as the need for a microbe to continually switch its outer coat to escape detection by the human immune system. Such genes can tell researchers how organisms outwit the immune system or develop drug resistance.

This new technique is a total departure from current methods of finding rapidly evolving genes, and has already pinpointed previously unknown genes in the tuberculosis and malaria parasites that could be potential drug targets.

"In the typical comparative method, researchers take equivalent genes from several organisms, like humans and chimps and mice, line them up and count the differences," explained coauthor Hunter B. Fraser, a graduate student in molecular and cell biology at UC Berkeley. "That gives you an idea of what kinds of changes a gene has undergone over evolution, and from the kinds of changes you see, you can infer something about the way it is evolving - whether it has been pressured to change or pressured to stay the same.

"We’re coming out with a similar end result - knowing what kinds of evolutionary pressures are on different genes - but we can do it with just a single genome sequence, instead of lining up genes from different genomes and comparing sequences."

Fraser works in the laboratory of Michael Eisen, a UC Berkeley adjunct assistant professor of molecular and cell biology and a member of the QB3 consortium (California Institute for Quantitative Biomedical Research).

"This technique can be used to quickly identify pathogenic genes that interact closely with the human immune system, since these genes are under tremendous pressure to evolve quickly," said coauthor Joshua B. Plotkin, a junior fellow in the Faculty of Arts and Sciences at Harvard. "Such genes are prime targets for new drugs and vaccines to counter deadly pathogens."

The technique involves a statistical analysis of an entire genome, comparing the rate of change of a specific gene to the average rate of change within the genome. An organism’s genome is a sequence of DNA nucleotides - either A, G, T or C (for adenine, guanine, thymine and cytosine) - grouped into triplets, called codons. Each codon codes for a specific amino acid to be strung together to create a protein. The series thymine, cytosine and adenine - a TCA codon - always yields a serine amino acid, for example.

Because 64 DNA triplets can be made from the four available DNA nucleotides but there are only 20 different amino acids, some amino acids are coded by more than one codon. Arginine, for example, is coded by six different codons: CGA, CGC, CGG, CGT, AGA and AGG.

Based on an idea by Plotkin, the team zeroed in on the susceptibility of codons to point mutations - alteration of a single DNA nucleotide - and the fact that not all point mutations have the same effect. A random point mutation in some codons is less likely to create a codon that codes for a different amino acid. For example, the conversion of CGA to CGC would still result in an arginine, leaving the protein’s amino acid sequence unchanged. Based on the structure of the genetic code - that is, the translation table connecting codons to amino acids - the group was able to tell which codons were more likely to have been mutated into a codon for a different amino acid.

By counting, for example, the frequency of the six codons coding for arginine in a single gene, and comparing it to the frequency throughout the full genome, the researchers are able to determine whether the gene has likely evolved faster or slower than the genome as a whole.

"We add up over an entire gene which triplets it’s using, and then we ask, ’Would we expect to see this kind of usage of triplets just by chance or not?’" Fraser said. "If not, it’s unusual and gives us a clue to how the gene has been evolving."

"We need the whole genome sequence because we have to learn, for each genome, what its background distribution of triplets is," he added. "If we didn’t know that, we wouldn’t be able to find a gene with a significant departure from that."

The technique only works with some amino acids. The new results come from an analysis of arginine, leucine and serine, each of which is coded for by six different codons, and glycine, which coded for by four different codons.

The team, which included Jonathan Dushoff, a postdoctoral researcher at Princeton and the NIH, used its technique to analyze the 4,000 genes in the genome of the tuberculosis bacterium (Mycobacterium tuberculosis) and the 5,000 genes in the genome of the malaria parasite (Plasmodium falciparum).

The genes in these organisms that turned out to be rapidly evolving were largely those genes coding for antigens, that is, proteins that coat the surface of the pathogen and incite an immune response. By constantly changing its antigen coat, a pathogen can elude the immune system, evolving eventually into a new strain to challenge the human immune system again.

"The fact that we found most antigens were quickly evolving under our metric confirmed that our technique works," Fraser said.

The researchers also discovered previously unrecognized genes that are evolving rapidly. These genes are attractive candidates for further research into which genes may be interacting with the human immune system.

"We also found that within classes of antigens, some are under much stronger selection than others, which people hadn’t found before," he said. "We are able to make hypotheses about which ones are actually interacting with the immune system and which ones are not, based on this new finding."

Fraser emphasized that the technique, referred to as codon volatility, complements comparative gene methods common now. Codon volatility can tell about recent evolutionary pressure on genes, while comparative methods can tell about evolutionary pressure over millions of years.

The codon volatility method has limitations, however, he said. It relies on the fact that the proportion of each of the four DNA nucleotides is fairly uniform across the entire genome of an organism. In humans, however, the proportion is different at different places in the genome. Nevertheless, Fraser said the group is at work modifying the method to analyze codon volatility in the human genome.

The work was supported by the Harvard Society of Fellows and the NIH.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>