Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the mystery of the dancer mice, and cleft lip too

30.04.2004


By watching mice "dance" and comparing the DNA of the dancers to their flat-footed siblings, scientists have discovered a genetic cause of cleft lip and palate in mice, a finding that is already being used to search for a similar genetic defect in humans.



A team led by Rulang Jiang of the Center for Oral Biology at the University of Rochester Medical Center found that a gene known as Tbx10 is responsible for causing cleft lip and palate in mice. The group, which reported its results April 26 in the on-line edition of the Proceedings of the National Academy of Sciences, is now working with a group at the University of Iowa to find a similar mutation in humans.

The Rochester team studied mice that naturally carry a genetic mutation called Dancer, so named because mice with one copy of the Dancer mutation twist as they walk, toss their heads abnormally, and have balance problems due to inner-ear damage caused by the mutation. For more than 35 years it’s been known that these mice are also more susceptible than normal mice to being born with cleft lip and palate, while mice with two copies of the mutation are always born with the defect.


To narrow down the stretch of DNA where the genetic defect resides, graduate student Jeffrey Bush bred many litters of mice and monitored the offspring for head-tossing and other Dancer signs. Through meticulous analysis of the genetics of the dancers vs. the non-dancers, Bush, Jiang, and Research Professor Yu Lan narrowed down the location of the gene to a small area on chromosome 19. Instead of having to pick through all of a mouse’s estimated 25,000 genes to find Dancer, the team had to contend with a region containing only 97 genes.

"It’s like the difference between looking for a small town using a map of the entire United States vs. a map just of New York State," says Bush, a graduate student in the Department of Biology. "Once we were able to narrow down the location of the mutation, the job became easier."

Bush and colleagues did some homework on those 97 genes and discovered that one of the genes is Tbx10; that caught their interest, Bush says, because it encodes one of a family of proteins known to be crucial in development by turning on and off other genes. Two closely related genes are known to play a role in cranio-facial development, he says, and mutations in other "T-box" genes result in birth defects.

Looking more closely, the team found the precise genetic defect responsible for the Dancer mice: They discovered a chunk of genetic material from another gene – a specialized strip of DNA responsible for turning a gene on – embedded into the DNA of the Tbx10 gene. They found that in mice with the Dancer mutation, the Tbx10 gene is active in places it’s normally not, including the developing face.

While the team is investigating exactly how Tbx10 contributes to cleft lip and palate, Jiang suspects there are at least 10 genes linked to the disorder. Previously a gene in mice was linked to some cases of cleft palate, and then scientists found a similar gene in humans – but still the cause of most cases of cleft lip and palate in humans is not known.

"It’s likely that mutations in many different genes could cause clefting," says Jiang. "Now that we’ve identified one specific mutation, we will investigate the molecular networks that control facial development to look for other important players in the clefting process."

Going from a few cells of an embryo to a full-fledged face – whether human or mouse – requires the cooperation of hundreds of genes turning on or off at just the right time, Jiang says.

"The face develops initially from five separate parts surrounding the oral cavity – hundreds of genes are involved in bringing the parts together to form the intact face. The development of the face has been under-studied in biology. It’s a complex problem," says Jiang, an assistant professor of Biomedical Genetics whose work is supported by the National Institute of Dental and Craniofacial Research.

Worldwide about 1 of every 700 people is born with a cleft lip, either with or without a cleft palate. Asians and American Indians are slightly more likely to have the birth defect than Caucasians, while African Americans have a much lower risk. The disfiguring gap or opening in the lip or the roof of the mouth can cause dental and speech problems, trouble eating, and other difficulties. In the United States the problem is usually corrected through multiple surgeries over the course of many years.

"Facial clefts are a significant and disfiguring birth defect," says Jiang. "A baby born with clefting might need years of multiple surgeries. It also creates a social burden for the person."

For tens of thousands of children around the world, the problem has been fixed by volunteers for Operation Smile, a non-profit organization that provides facial reconstruction surgery for indigent children and young adults in the United States and 20 developing countries. Strong pediatrician Chin-To Fong has traveled to the Philippines as part of Operation Smile teams and is now faculty adviser to a medical student chapter of the group. This Sunday, May 2, at 10 a.m., students in the School of Medicine & Dentistry are holding a 5K run in Genesee Valley Park as a fundraiser for Operation Smile.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>