Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-centric drug development and functional glycomics enrich biopharmaceuticals pipeline

29.04.2004


Technical Insights biotechnology industry impact service



Researchers are beginning to see the potential for breakthrough in healthcare through glycomics, which studies carbohydrates, proteins and their interactions. In fact, these carbohydrates are moving beyond their regular roles as sugar storage bins. Carbohydrate-binding proteins are becoming extremely useful in curing various illnesses.

"The rapid evolution of glycomics as a natural extension of proteomics provides a better understanding of glycoproteins, glycosylation process, and its role in the protein function," explains Frost & Sullivan Industry Analyst Giridhar Rao. "This in turn facilitates the development of novel biodrugs."


The rapid progress of glycomics in the biopharmaceutical industry is evident from the existence of approximately half a dozen drugs, in which manipulation of carbohydrates and proteins provides advanced drug properties. For example, Epogen – a glycotherapeutic drug – contains two additional carbohydrate groups that can extend circulatory half-life and magnify efficiencies.

Active research on glycosyltransferases to understand the role of carbohydrate interactions in a cancerous cell is also likely to provide further opportunities for application of glycomics. One such prospect lies in the development of protein serum-based cancer diagnostics.

In fact, glycoprotein therapeutics is the fastest growing segment in the biopharmaceuticals industry with an annual growth rate of 24 percent, which is expected to accelerate further. However, maintaining adequate manufacturing capacity is a critical challenge.

"With around 100 protein-based drugs that are in late-stages of human clinical trials, few are likely to hit the market in the coming years," says Rao. "Hence, raising the demand for production capacity at least by four times more than the existing capacity. This may be essential to maintain the demand-supply equilibrium."

This creates an urgent need for alternate manufacturing media such as transgenic plants and animals, besides the mammalian and microbial and fungal cell culture systems.

Fungal cell lines provide considerable time and cost benefits over mammalian cell lines. For instance, the latter proves to be a lengthy process and may alter the properties of the final therapeutic glycoprotein.

Conversely, fungal cell lines such as engineered yeast expression systems for production of humanly glycosylated protein provide for faster fermentation and a higher product yield.

Industrial bioprocessing also holds immense potential for biotechnology. The development of a sophisticated microbioreactor for bacterial cell culture could speed up the bioprocessing mechanism.

A 5- to 50-microliter microbioreactor provides significant advantages over traditional chemical processes, such as lower temperature, pressure, and almost neutral pH requirements. Also, mass production with lesser power consumption is viable since the raw materials are renewable living cells.

Nano-biotechnology proves to be another potential growth area, where the endless possibilities of ’doing big with small’ exist. This has sparked an explosion of research and has influenced the commercialization of many nano drug delivery technologies.

For instance, the uniquely small-sized carbon buckyballs and nanotubes are proving to be successful nano-carriers that are small enough to navigate within the body. Thereby, they could serve as effective carriers of active ingredients for cancer treatment. However, dealing with the toxicity of trace nanoparticles that could be left behind in the body, is a major concern.

Another promising technique is nano-sized dendrimers that escape the blood stream through vascular pores, and selectively target and treat tumor cells. Dendrimer-based drugs coupled with additional agents provide high-end tumor images and hence could revolutionize cancer treatment.

Julia Paulson | EurekAlert!
Further information:
http://www.frost.com
http://www.technicalinsights.frost.com

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>