Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene defect linked to premature aging

28.04.2004


Johns Hopkins Kimmel Cancer Center researchers have identified a gene that, when altered makes cells and animals age prematurely and die. The findings, reported in the May 1 edition of Genes and Development, may provide a new target for therapies that force cancer cells to an early death.



The gene, called PASG (Proliferation Associated SNF2-like Gene), normally works by decreasing the activity of other genes in two different ways: helping to add chemical groups to DNA, in a process known as methylation, or by modifying protein structures called histones that help wind DNA into compact coils.

"In order to grow and stay alive, cells depend on the PASG gene to reduce the activity of other genes, but it’s a very complicated process - much like modifying the engine of an F-15 fighter jet while it’s flying," says Robert Arceci, M.D., Ph.D., King Fahd Professor and Director of Pediatric Oncology, and director of the study.


The Hopkins team began investigating the PASG gene after finding that its activity is integrally involved in cell growth and mutated forms of the gene occur in acute leukemias. Using genetically engineered mice, Arceci’s team knocked out part of the "core engine" of the PASG gene, decreasing methylation throughout the genome and allowing the wrong genes, particularly those associated with premature aging, to be active all the time. The result was that mice with this mutated PASG protein showed signs of premature aging and profound growth problems, including low birth-weight, graying and loss of hair, skeletal abnormalities, reduced fat and early death.

"To keep body tissues working correctly, the PASG gene appears to help cells regenerate, mature and prevent early aging," explains Arceci. "Each cell is programmed with a set number of replications before it dies. With a mutated PASG gene, the cell may replicate only a fraction of the time, and then it dies prematurely," explains Arceci.

"If PASG’s methylation activity could be blocked in human cancer cells, we could potentially cause them to age faster and die earlier," says Arceci.

Not to be confused with a cell death process called apoptosis, which cuts the DNA into a million pieces, this aging process, called replicative senescence, lets the cell live for a limited period of time with a reduced number of cell divisions before it ages and dies.

The researchers are beginning to screen compounds for activity in blocking the PASG gene in tumor cells and mice. Human studies are not planned at this time.

This research was funded by the Children’s Cancer Foundation, the Higgin’s Scholar Foundation and the National Institutes of Health.

Additional participants in this research were Lin-Quan Sun, David W. Lee, Quangeng Zhang, Weihong Xiao, Eric H. Raabe, Allen Meeker, and David Huso from Johns Hopkins and Dengshun Miao from McGill University, Canada.



Johns Hopkins Medicine
Office of Communications and Public Affairs
Media Contact: Vanessa Wasta
410-955-1287
wastava@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>