Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene defect linked to premature aging

28.04.2004


Johns Hopkins Kimmel Cancer Center researchers have identified a gene that, when altered makes cells and animals age prematurely and die. The findings, reported in the May 1 edition of Genes and Development, may provide a new target for therapies that force cancer cells to an early death.



The gene, called PASG (Proliferation Associated SNF2-like Gene), normally works by decreasing the activity of other genes in two different ways: helping to add chemical groups to DNA, in a process known as methylation, or by modifying protein structures called histones that help wind DNA into compact coils.

"In order to grow and stay alive, cells depend on the PASG gene to reduce the activity of other genes, but it’s a very complicated process - much like modifying the engine of an F-15 fighter jet while it’s flying," says Robert Arceci, M.D., Ph.D., King Fahd Professor and Director of Pediatric Oncology, and director of the study.


The Hopkins team began investigating the PASG gene after finding that its activity is integrally involved in cell growth and mutated forms of the gene occur in acute leukemias. Using genetically engineered mice, Arceci’s team knocked out part of the "core engine" of the PASG gene, decreasing methylation throughout the genome and allowing the wrong genes, particularly those associated with premature aging, to be active all the time. The result was that mice with this mutated PASG protein showed signs of premature aging and profound growth problems, including low birth-weight, graying and loss of hair, skeletal abnormalities, reduced fat and early death.

"To keep body tissues working correctly, the PASG gene appears to help cells regenerate, mature and prevent early aging," explains Arceci. "Each cell is programmed with a set number of replications before it dies. With a mutated PASG gene, the cell may replicate only a fraction of the time, and then it dies prematurely," explains Arceci.

"If PASG’s methylation activity could be blocked in human cancer cells, we could potentially cause them to age faster and die earlier," says Arceci.

Not to be confused with a cell death process called apoptosis, which cuts the DNA into a million pieces, this aging process, called replicative senescence, lets the cell live for a limited period of time with a reduced number of cell divisions before it ages and dies.

The researchers are beginning to screen compounds for activity in blocking the PASG gene in tumor cells and mice. Human studies are not planned at this time.

This research was funded by the Children’s Cancer Foundation, the Higgin’s Scholar Foundation and the National Institutes of Health.

Additional participants in this research were Lin-Quan Sun, David W. Lee, Quangeng Zhang, Weihong Xiao, Eric H. Raabe, Allen Meeker, and David Huso from Johns Hopkins and Dengshun Miao from McGill University, Canada.



Johns Hopkins Medicine
Office of Communications and Public Affairs
Media Contact: Vanessa Wasta
410-955-1287
wastava@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>