Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene defect linked to premature aging

28.04.2004


Johns Hopkins Kimmel Cancer Center researchers have identified a gene that, when altered makes cells and animals age prematurely and die. The findings, reported in the May 1 edition of Genes and Development, may provide a new target for therapies that force cancer cells to an early death.



The gene, called PASG (Proliferation Associated SNF2-like Gene), normally works by decreasing the activity of other genes in two different ways: helping to add chemical groups to DNA, in a process known as methylation, or by modifying protein structures called histones that help wind DNA into compact coils.

"In order to grow and stay alive, cells depend on the PASG gene to reduce the activity of other genes, but it’s a very complicated process - much like modifying the engine of an F-15 fighter jet while it’s flying," says Robert Arceci, M.D., Ph.D., King Fahd Professor and Director of Pediatric Oncology, and director of the study.


The Hopkins team began investigating the PASG gene after finding that its activity is integrally involved in cell growth and mutated forms of the gene occur in acute leukemias. Using genetically engineered mice, Arceci’s team knocked out part of the "core engine" of the PASG gene, decreasing methylation throughout the genome and allowing the wrong genes, particularly those associated with premature aging, to be active all the time. The result was that mice with this mutated PASG protein showed signs of premature aging and profound growth problems, including low birth-weight, graying and loss of hair, skeletal abnormalities, reduced fat and early death.

"To keep body tissues working correctly, the PASG gene appears to help cells regenerate, mature and prevent early aging," explains Arceci. "Each cell is programmed with a set number of replications before it dies. With a mutated PASG gene, the cell may replicate only a fraction of the time, and then it dies prematurely," explains Arceci.

"If PASG’s methylation activity could be blocked in human cancer cells, we could potentially cause them to age faster and die earlier," says Arceci.

Not to be confused with a cell death process called apoptosis, which cuts the DNA into a million pieces, this aging process, called replicative senescence, lets the cell live for a limited period of time with a reduced number of cell divisions before it ages and dies.

The researchers are beginning to screen compounds for activity in blocking the PASG gene in tumor cells and mice. Human studies are not planned at this time.

This research was funded by the Children’s Cancer Foundation, the Higgin’s Scholar Foundation and the National Institutes of Health.

Additional participants in this research were Lin-Quan Sun, David W. Lee, Quangeng Zhang, Weihong Xiao, Eric H. Raabe, Allen Meeker, and David Huso from Johns Hopkins and Dengshun Miao from McGill University, Canada.



Johns Hopkins Medicine
Office of Communications and Public Affairs
Media Contact: Vanessa Wasta
410-955-1287
wastava@jhmi.edu

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>