Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnostic method based on nanoscience could rival PCR

28.04.2004


Since the advent of the polymerase chain reaction (PCR) nearly 20 years ago, scientists have been trying to overturn this method for analyzing DNA with something better. The "holy grail" in this quest is a simple method that could be used for point-of-care medical diagnostics, such as in the doctor’s office or on the battlefield.

Now chemists at Northwestern University have set a DNA detection sensitivity record for a diagnostic method that is not based on PCR -- giving PCR a legitimate rival for the first time. Their results were published online today (April 27) by the Journal of the American Chemical Society (JACS).

"We are the first to demonstrate technology that can compete with -- and beat -- PCR in many of the relevant categories," said Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, who led the research team. "Nanoscience has made this possible. Our alternative method promises to bring diagnostics to places PCR is unlikely to go -- the battlefield, the post office, a Third World village, the hospital and, perhaps ultimately, the home."



The new selective and ultra-sensitive technology, which is based on gold nanoparticles and DNA, is easier to use, considerably faster, more accurate and less expensive than PCR, making it a leading candidate for use in point-of-care diagnostics. The method, called bio-bar-code amplification (BCA), can test a small sample and quickly deliver an accurate result. BCA also can scan a sample for many different disease targets simultaneously.

The Northwestern team has demonstrated that the BCA method can detect as few as 10 DNA molecules in an entire sample in a matter of minutes, making it as sensitive as PCR. The technology is highly selective, capable of differentiating single-base mismatches and thereby reducing false positives.

In their experiments, the scientists used the anthrax lethal factor, which is important for bioterrorism and has been well studied in the literature, as their target DNA.

The BCA approach builds on earlier work reported last September in the journal Science where Mirkin and colleagues used BCA to detect proteins, specifically prostate specific antigen, at low levels.

For the DNA detection, the team used commercially available materials to outfit a magnetic microparticle and a gold nanoparticle each with a different oligonucleotide, a single strand of DNA that is complementary to the target DNA. When in solution, the oligonucleotides "recognize" and bind to the DNA, sandwiching the DNA between the two particles.

Attached to each tiny gold nanoparticle (just 30 nanometers in diameter) are hundreds to thousands of identical strands of DNA. Mirkin calls this "bar-code DNA" because they have designed it as a unique label specific to the DNA target. After the "particle-DNA-particle" sandwich is removed magnetically from solution, the bar-code DNA is removed from the sandwich and read using standard DNA detection methodologies.

"For each molecule of captured target DNA, thousands of bar-code DNA strands are released, which is a powerful way of amplifying the signal for a DNA target of interest, such as anthrax," said Mirkin, also George B. Rathmann Professor of Chemistry. "There is power in its simplicity."

The technology could be commercially available for certain diseases in one year, Mirkin said.

In addition to Mirkin, other authors on the JACS paper are Jwa-Min Nam and Savka I. Stoeva, from Northwestern University. The research was supported by the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, the National Science Foundation and the National Institutes of Health.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu/

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>