Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnostic method based on nanoscience could rival PCR

28.04.2004


Since the advent of the polymerase chain reaction (PCR) nearly 20 years ago, scientists have been trying to overturn this method for analyzing DNA with something better. The "holy grail" in this quest is a simple method that could be used for point-of-care medical diagnostics, such as in the doctor’s office or on the battlefield.

Now chemists at Northwestern University have set a DNA detection sensitivity record for a diagnostic method that is not based on PCR -- giving PCR a legitimate rival for the first time. Their results were published online today (April 27) by the Journal of the American Chemical Society (JACS).

"We are the first to demonstrate technology that can compete with -- and beat -- PCR in many of the relevant categories," said Chad A. Mirkin, director of Northwestern’s Institute for Nanotechnology, who led the research team. "Nanoscience has made this possible. Our alternative method promises to bring diagnostics to places PCR is unlikely to go -- the battlefield, the post office, a Third World village, the hospital and, perhaps ultimately, the home."



The new selective and ultra-sensitive technology, which is based on gold nanoparticles and DNA, is easier to use, considerably faster, more accurate and less expensive than PCR, making it a leading candidate for use in point-of-care diagnostics. The method, called bio-bar-code amplification (BCA), can test a small sample and quickly deliver an accurate result. BCA also can scan a sample for many different disease targets simultaneously.

The Northwestern team has demonstrated that the BCA method can detect as few as 10 DNA molecules in an entire sample in a matter of minutes, making it as sensitive as PCR. The technology is highly selective, capable of differentiating single-base mismatches and thereby reducing false positives.

In their experiments, the scientists used the anthrax lethal factor, which is important for bioterrorism and has been well studied in the literature, as their target DNA.

The BCA approach builds on earlier work reported last September in the journal Science where Mirkin and colleagues used BCA to detect proteins, specifically prostate specific antigen, at low levels.

For the DNA detection, the team used commercially available materials to outfit a magnetic microparticle and a gold nanoparticle each with a different oligonucleotide, a single strand of DNA that is complementary to the target DNA. When in solution, the oligonucleotides "recognize" and bind to the DNA, sandwiching the DNA between the two particles.

Attached to each tiny gold nanoparticle (just 30 nanometers in diameter) are hundreds to thousands of identical strands of DNA. Mirkin calls this "bar-code DNA" because they have designed it as a unique label specific to the DNA target. After the "particle-DNA-particle" sandwich is removed magnetically from solution, the bar-code DNA is removed from the sandwich and read using standard DNA detection methodologies.

"For each molecule of captured target DNA, thousands of bar-code DNA strands are released, which is a powerful way of amplifying the signal for a DNA target of interest, such as anthrax," said Mirkin, also George B. Rathmann Professor of Chemistry. "There is power in its simplicity."

The technology could be commercially available for certain diseases in one year, Mirkin said.

In addition to Mirkin, other authors on the JACS paper are Jwa-Min Nam and Savka I. Stoeva, from Northwestern University. The research was supported by the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, the National Science Foundation and the National Institutes of Health.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>