Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement clarifies role between protein structure and cell adhesion

27.04.2004


Scientists studying the adhesive properties of the neural cell adhesion molecule (NCAM) – a protein that helps bind the nervous system together – have found that two opposing models of cell adhesion are both correct.



“Our extremely sensitive technique allows us to directly measure how these proteins bind to one another, and to further explore the relationship between their structure and function,” said Deborah Leckband, a professor and head of chemical and biomolecular engineering at the University of Illinois at Urbana-Champaign and corresponding author of a paper to be published the week of April 26 in the Online Early Edition of the Proceedings of the National Academy of Sciences.

Important in neural development and for linking muscles to neurons, NCAM is a membrane-anchored protein that holds cells together through bonds formed between five modular regions called domains. Previous studies had generated two seemingly contradictory models for NCAM adhesion that involved different domains.


To directly study the adhesive properties of NCAM, Leckband and her colleagues used a surface-force apparatus to measure the molecular forces between two NCAM monolayers as a function of the distance between them.

“Our direct-force measurements show that NCAM binds in two spatially distinct configurations that result in different membrane separations,” said Leckband, who also is a researcher at the university’s Beckman Institute for Advanced Science and Technology. “The protein’s modular architecture permits the formation of multiple bonds that engage different modules, which allowed us to directly test both models.”

Previous studies of NCAM binding could detect only one or the other configuration, Leckband said, thereby creating an apparent contradiction between two opposing models. The researchers’ measurements confirm both models, but disprove a recently proposed third model that was based upon a recently published crystal structure.

“Many research groups rely on crystal structures to determine the nature of chemical interactions that occur between the molecules when they are bound,” Leckband said. “But we are finding that, particularly for these weakly binding interactions, there are other factors that influence how the crystal is formed that override the physical interactions.”

By showing that NCAM forms either of two adhesive configurations, which require different domains and span different membrane separations, the researchers have reconciled several apparently contradictory experimental results, and validated two of the current models as contributing to spatially and molecularly distinct NCAM bonds.

“The different bonding configurations may serve as scaffolds that hold the membranes apart and regulate the intercellular space,” Leckband said. “The scaffolds would allow some molecules in – like some proteins that activate the immune response – while excluding others.”

Co-authors of the paper were graduate student Colin Johnson at the U. of I., and Ichiro Fujimoto, Claire Perrin-Tricaud and Urs Rutishauser at the Memorial Sloan-Kettering Cancer Center in New York City. The National Institutes of Health funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0426adhesion.html

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>