Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measurement clarifies role between protein structure and cell adhesion


Scientists studying the adhesive properties of the neural cell adhesion molecule (NCAM) – a protein that helps bind the nervous system together – have found that two opposing models of cell adhesion are both correct.

“Our extremely sensitive technique allows us to directly measure how these proteins bind to one another, and to further explore the relationship between their structure and function,” said Deborah Leckband, a professor and head of chemical and biomolecular engineering at the University of Illinois at Urbana-Champaign and corresponding author of a paper to be published the week of April 26 in the Online Early Edition of the Proceedings of the National Academy of Sciences.

Important in neural development and for linking muscles to neurons, NCAM is a membrane-anchored protein that holds cells together through bonds formed between five modular regions called domains. Previous studies had generated two seemingly contradictory models for NCAM adhesion that involved different domains.

To directly study the adhesive properties of NCAM, Leckband and her colleagues used a surface-force apparatus to measure the molecular forces between two NCAM monolayers as a function of the distance between them.

“Our direct-force measurements show that NCAM binds in two spatially distinct configurations that result in different membrane separations,” said Leckband, who also is a researcher at the university’s Beckman Institute for Advanced Science and Technology. “The protein’s modular architecture permits the formation of multiple bonds that engage different modules, which allowed us to directly test both models.”

Previous studies of NCAM binding could detect only one or the other configuration, Leckband said, thereby creating an apparent contradiction between two opposing models. The researchers’ measurements confirm both models, but disprove a recently proposed third model that was based upon a recently published crystal structure.

“Many research groups rely on crystal structures to determine the nature of chemical interactions that occur between the molecules when they are bound,” Leckband said. “But we are finding that, particularly for these weakly binding interactions, there are other factors that influence how the crystal is formed that override the physical interactions.”

By showing that NCAM forms either of two adhesive configurations, which require different domains and span different membrane separations, the researchers have reconciled several apparently contradictory experimental results, and validated two of the current models as contributing to spatially and molecularly distinct NCAM bonds.

“The different bonding configurations may serve as scaffolds that hold the membranes apart and regulate the intercellular space,” Leckband said. “The scaffolds would allow some molecules in – like some proteins that activate the immune response – while excluding others.”

Co-authors of the paper were graduate student Colin Johnson at the U. of I., and Ichiro Fujimoto, Claire Perrin-Tricaud and Urs Rutishauser at the Memorial Sloan-Kettering Cancer Center in New York City. The National Institutes of Health funded the work.

James E. Kloeppel | UIUC
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>