Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement clarifies role between protein structure and cell adhesion

27.04.2004


Scientists studying the adhesive properties of the neural cell adhesion molecule (NCAM) – a protein that helps bind the nervous system together – have found that two opposing models of cell adhesion are both correct.



“Our extremely sensitive technique allows us to directly measure how these proteins bind to one another, and to further explore the relationship between their structure and function,” said Deborah Leckband, a professor and head of chemical and biomolecular engineering at the University of Illinois at Urbana-Champaign and corresponding author of a paper to be published the week of April 26 in the Online Early Edition of the Proceedings of the National Academy of Sciences.

Important in neural development and for linking muscles to neurons, NCAM is a membrane-anchored protein that holds cells together through bonds formed between five modular regions called domains. Previous studies had generated two seemingly contradictory models for NCAM adhesion that involved different domains.


To directly study the adhesive properties of NCAM, Leckband and her colleagues used a surface-force apparatus to measure the molecular forces between two NCAM monolayers as a function of the distance between them.

“Our direct-force measurements show that NCAM binds in two spatially distinct configurations that result in different membrane separations,” said Leckband, who also is a researcher at the university’s Beckman Institute for Advanced Science and Technology. “The protein’s modular architecture permits the formation of multiple bonds that engage different modules, which allowed us to directly test both models.”

Previous studies of NCAM binding could detect only one or the other configuration, Leckband said, thereby creating an apparent contradiction between two opposing models. The researchers’ measurements confirm both models, but disprove a recently proposed third model that was based upon a recently published crystal structure.

“Many research groups rely on crystal structures to determine the nature of chemical interactions that occur between the molecules when they are bound,” Leckband said. “But we are finding that, particularly for these weakly binding interactions, there are other factors that influence how the crystal is formed that override the physical interactions.”

By showing that NCAM forms either of two adhesive configurations, which require different domains and span different membrane separations, the researchers have reconciled several apparently contradictory experimental results, and validated two of the current models as contributing to spatially and molecularly distinct NCAM bonds.

“The different bonding configurations may serve as scaffolds that hold the membranes apart and regulate the intercellular space,” Leckband said. “The scaffolds would allow some molecules in – like some proteins that activate the immune response – while excluding others.”

Co-authors of the paper were graduate student Colin Johnson at the U. of I., and Ichiro Fujimoto, Claire Perrin-Tricaud and Urs Rutishauser at the Memorial Sloan-Kettering Cancer Center in New York City. The National Institutes of Health funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0426adhesion.html

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>