Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretching DNA on a tiny scale, researchers probe the basis for its compaction

23.04.2004


Using magnets and video microscopy to measure the length of individual DNA molecules under experimental conditions, researchers have demonstrated that Condensin, a complex of proteins widely conserved in evolution, physically compacts DNA in a manner dependent on energy from ATP. The finding is significant because the Condensin complex, which is essential for life, has been known to play a key role in the dramatic condensation of genomic DNA that precedes mitosis and cell division. The new work puts into sharper focus the mechanism by which Condensin accomplishes this compaction, which is essential for the precise segregation of the genetic material to later generations of cells.



Scientists Terence Strick, Tatsuhiko Kawaguchi and Tatsuya Hirano of Cold Spring Harbor Laboratory employed a nanomanipulation technique by which small individual molecules of DNA, tethered on one end to a glass slide and attached on the other end to a magnetic bead, could be gently stretched and twisted using small magnets. The technique allowed the researchers to exert controlled, variable force on the extended DNA, directly measuring changes in its compaction following interactions with Condensin complexes isolated from frog eggs. Because the helical DNA could be twisted, the scientists were also able to investigate how DNA topology – in this case, topological states called positive and negative supercoiling – might affect its ability to be compacted by Condensin. Such measurements are central to illuminating the molecular mechanism used by Condensin in the cell.

The researchers found that Condensin compacts DNA against a weak stretching force, but that increasing the force on the DNA reversed compaction, effectively breaking apart the molecular interactions formed by Condensin. Carefully measuring changes in distance between the two ends of the DNA molecule revealed evidence that both compaction and decompaction often occurred in jumps of certain lengths. Comparing the range of these step sizes to the physical dimensions of Condensin complexes, the authors were able to make some informed proposals for how Condensins interact with DNA – for example, by forming large DNA loops that can be popped open by increased stretching force. It remains unclear whether individual Condensin complexes can accomplish this task single-handedly, or whether multiple complexes act cooperatively, but the new findings and techniques employed here establish a solid foundation for further work on such questions.



Terence R. Strick, Tatsuhiko Kawaguchi and Tatsuya Hirano: "Real-time Detection of Single-molecule DNA Compaction by Condensin I"

Published online in Current Biology 22 April 2004. Appearing in print in Current Biology Volume 14, Number 10, 25 May 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>