Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide screen reveals new tricks of old genes

23.04.2004


Process shows how mounds of data can be effectively managed



Johns Hopkins scientists have successfully used new techniques to search the yeast genome for genes that help keep copied chromosomes together, protecting the integrity of the organism’s genetic material during cell division.

By combining two genome-wide screens, the researchers were able to narrow down the dozens of genes identified by the first screen to just 17 that made both cut-offs -- a number small enough to be cost- and time-efficient to consider in some detail. Their report appears in the April issue of Molecular Biology of the Cell.


"Data created from new genome-scanning techniques can be overwhelming. Reading all there is to know about 50 genes to figure out what new knowledge may be lurking in the haystack is very difficult," says Forrest Spencer, Ph.D., associate professor in Hopkins’ McKusick-Nathans Institute of Genetic Medicine. "But by overlapping information from two screens, we were able to figure out what Mother Nature was trying to tell us that wasn’t too complicated for us to understand."

While the researchers had hoped their screens would reveal new genes and their functions, they instead identified genes previously linked to two other aspects of shepherding genetic material during cell division. Fifteen of the highlighted genes were already known to help ensure the accuracy of copied DNA and two help move chromosomes to opposite ends of the dividing cell.

But the researchers’ results give these "old" genes new jobs, associating them with cohesion, the little-understood process of keeping a chromosome and its copy together until the cell is ready to split in two. If the "sister" chromosomes aren’t kept together, both copies could end up on one side of the dividing cell. Another problem is that the copies could undergo extra rearrangements, risking loss of important genes.

"If there’s no cohesion, the cell will die," says Spencer. "However, if the process sometimes works and sometimes doesn’t, some cells survive but their genetic material gets scrambled."

It’s that sometimes-yes-sometimes-no problem that Spencer and her team are trying to figure out, in part because it’s interesting biology, but also because genetic instability plays such a big role in the development of cancer in humans. No one knows exactly at what point errors enter the genetic material and aren’t fixed, but the intricacies of chromosomes’ manipulation during cell division seem a good place to start.

Postdoctoral fellow Cheryl Warren, Ph.D., started the search by screening 5,916 yeast genes -- all at once -- for ones needed for survival in the absence of a gene called ctf4, already known to be a critical component of cohesion. Twenty-six genes popped out of this screen, a type known as "synthetic lethal" since the yeast survive the loss of either one, but not both, genes.

However, the synthetic lethal effect of some, if not many, of the genes from this screen would be due to problems other than faulty cohesion, the researchers knew. "We had to do something else to get a manageable starting point," says Warren.

So, using a technique she developed to identify whether a gene’s loss causes the genetic material to become scrambled, Warren tested those 26 genes to see which of them seemed most likely to contribute to genetic instability through their involvement in cohesion. In these experiments, markers were scattered throughout the yeast’s genetic material so she could easily tell if pieces of the genome moved or went missing when a gene was knocked out.

Only 17 of the 26 identified genes caused genetic instability when missing from the yeast genome. Fifteen of those genes are involved in double-checking whether newly formed strands of DNA matched the cell’s original genetic material and calling in "repairmen" as needed (a process called the "S-phase checkpoint"). The other two genes are part of the machinery previously known to help move the two sets of chromosomes to opposite sides of the dividing cell.

"By using both screens, we got a number that was small enough to follow-up on, and yet large enough to reveal a trend," says Warren. "This is the first evidence that proteins involved in checking the DNA sequence are also involved in keeping sister chromosomes together, and it’s a great starting point for understanding more."


The research was funded by the National Human Genome Research Institute, the National Institute for General Medical Sciences, and the National Heart, Lung, and Blood Institute, all components of the National Institutes of Health.

Authors on the report are Warren, Spencer, Mark Eckley, Marina Lee, Joseph Hanna, Adam Hughes, Brian Peyser and Chunfa Jie of the McKusick-Nathans Institute; and Rafael Irizarry of the Johns Hopkins Bloomberg School of Public Health.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.molbiolcell.org/cgi/reprint/E03-09-0637v1.pdf

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>