Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two molecules work together to aid transport of immune cells, UT Southwestern researchers find

21.04.2004


New research findings about T-cell transport shed light on how the normal immune system functions and could have implications in fighting autoimmune and inflammatory diseases, say researchers at UT Southwestern Medical Center at Dallas.



Two molecules on the surfaces of T-cells – a type of immune cell – must work in tandem to help the T-cells cross from the bloodstream into infected tissues, where the T-cells initiate an immune or inflammatory response, researchers at UT Southwestern have discovered.

The research, which was done in mice, appears in the April 21 issue of the journal Immunity.


In order to fight certain infections, T-cells must migrate from the bloodstream and into infected tissue. T-cells also cross blood vessel walls to initiate inflammatory or autoimmune responses in diseases such as rheumatoid arthritis, type 1 diabetes, lupus, asthma, Crohn’s disease and colitis.

Scientists know that two specific molecules, or receptors, on passing T-cells in the bloodstream interact with receptors on the walls of blood vessels. One T-cell receptor, called CD44, is responsible for getting the T-cells to "roll" along the blood vessel wall.

"CD44 governs the rolling behavior of the T-cell, where it touches and then lifts off the vascular wall," said Dr. Mark Siegelman, associate professor of pathology at UT Southwestern and senior author of the study.

A second receptor, VLA-4, stops the T-cells from rolling. This step in the process is called firm adhesion.

"You need both of these steps in order to get the T-cells out of the blood vessel and into tissue," Dr. Siegelman said. "Only by completing the second step, firm adhesion, has the T-cell committed to sticking and getting out."

In the new research, UT Southwestern scientists found that in order to get the T-cells to stick firmly to the vascular wall, the CD44 and VLA-4 receptors on the T-cell had to be physically linked. If they do not form what’s called a bimolecular complex, firm adhesion does not occur.

"Our findings define a relationship between CD44 and VLA-4 that results in a cooperative system," Dr. Siegelman said. "If they aren’t linked, the T-cells exhibit rolling behavior, but not firm adhesion, and, therefore, they don’t move through the blood vessel wall to initiate immune or inflammatory responses."

The researchers also found that if part of the CD44 receptor is missing, the bimolecular complex does not form, inhibiting the T-cells from moving out of the bloodstream.

The research results may aid in future development of treatments for rheumatoid arthritis, for example, a condition in which T-cells travel from the bloodstream and into the space between joints, causing painful inflammation.

"One strategy for drug development might be to target CD44 or this bimolecular complex in order to prevent T-cells from getting in there and starting an inflammatory response," Dr. Siegelman said.

Other UT Southwestern researchers involved with the study are Dr. Animesh Nandi, research scientist in biochemistry, and Dr. Pila Estess, assistant professor of pathology.


The research was funded in part by the National Institutes of Health and the Burroughs Wellcome Fund.

Amanda Siegfried | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>