Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oldest Hemoglobin Ancestors Offer Clues To Earliest Oxygenbased Life

20.04.2004


Close look at structure of transport proteins could aid search< for future blood substitutes

Red-blooded genealogists take note: The discovery in microbes of two oxygen-packing proteins, the earliest known ancestors to hemoglobin, brings scientists closer to identifying the earliest life forms to use oxygen.

According to the project’s lead investigator, University of Hawaii microbiologist Maqsudul Alam, the research may also aid in the search for blood substitutes as new molecular details shed light on how the structure of such proteins, called protoglobins, evolved to transport and release oxygen.

Scientists from the Maui High Performance Computing Center and the University of Texas Southwestern Medical Center contributed to the research. The findings will appear in the Proceedings of the National Academy of Sciences (PNAS) in an online "Early Edition" this week (at www.pnas.org) and in the April 27 print issue. A four-year, $500,000 grant from the National Science Foundation supported the project.

To life on primordial Earth, oxygen was poison. Within single- celled archaea, special proteins arose that captured and transported molecular oxygen, not to release it for respiration but to isolate and detoxify it to protect the organism. Archaea are a distinct group of microbes. Their lineage diverged long ago from a common ancestor they shared with bacteria and eukaryotes (plants, animals and other life forms that encase their DNA within a nucleus). Many strains of archaea exist, often in the planet’s harshest, hottest and oxygen-deprived environments. Some, however, adapted to use oxygen.

Alam’s research group found the two primitive protoglobulins in two different archaea species. One, Aeropyrum pernix, is limited to oxygen-based respiration, survives optimally in near-boiling saltwater, and was first discovered among thermal sea vents off Japan. The other, Methanosarcina acetivorans, uses several anaerobic - or oxygen-free - metabolic pathways that create methane gas. M. acetivorans is found in a wide range of realms, including lake-bottom muck, composting leaves, cow pies and human intestines. The genomes of both have recently been sequenced.

The ability to use oxygen for respiration allowed the diversity of life to expand vastly, an impact more fundamental, if perhaps not as dramatic, as the evolutionary transitions organisms made adapting from sea to land, from the ground to the air, or from "all fours" to upright.

Elizabeth Hood, who directs the areas of signal transduction and cellular regulation for NSF’s Division of Molecular and Cellular Biosciences, said, "As early life forms were established on earth, the atmosphere contained numerous toxic molecules, including nitric oxide and hydrogen sulfide. Early hemoglobins most likely evolved to bind and detoxify these gases. When oxygen became a component of the atmosphere, it was also toxic, and these early organisms used hemoglobin to bind and ultimately detoxify the oxygen."

However, for advanced and larger life forms to exist in an oxygen- rich atmosphere on land, a mechanism was needed to take advantage of oxygen’s benefits, Hood said, and hemoglobins evolved into oxygen carriers rather than detoxifiers. "Finding early hemoglobins in the most primitive life forms on earth testifies to their crucial role in the development of life as we know it today," she said.

(In humans, with each breath in, hemoglobin binds oxygen in the lungs. Then, carried by blood cells made red by its oxygenated presence, the protein transports oxygen to tissues near and far in the body, where it then releases oxygen, which is essential to cellular respiration.)

To find the two protoglobins, the research team used advanced tools of biotechnology and high-performance computing, cloning genetic sequences from the two microbes and using specialized E. coli bacteria as gene-expression machinery to produce samples of the proteins. To analyze their structures, the team compared alignments with other members of the hemoglobin family of compounds. Computers generated models and created "molecular dynamic simulations" that illustrate with animations how the proteins bind with carbon monoxide, nitric oxide and oxygen.

Genetic sequences, binding characteristics and molecular structures of protoglobins were compared with those of hemoglobins and other oxygen-transport molecules from a wide range of organisms, including bacteria, tubeworms, roundworms, segmented "bloodworms," mice, humans and sperm whales.

According to Alam, the similarities between these molecules and the protoglobins of A. pernix and M. acetivorans suggest Sintriguing connections" between them and the evolution of mechanisms that sense oxygen, carbon monoxide, nitric oxide and hydrogen sulfide. These similarities, he said, also suggest connections to LUCA, short-hand for the "Last Universal Common Ancestor."

"LUCA is believed to have been a metabolically ’flexible’ single- celled organism with the ability to utilize oxygen for energy before free oxygen even existed in the air," said Alam. "We think protoglobin helped give life to LUCA. And its descendents - hemoglobin, myoglobin, neuroglobin, and cytoglobin - allowed higher organisms to evolve" by allowing organisms to maintain a metabolic balance in an oxygenated world.

Sean Kearns | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>