Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salty scans

20.04.2004


Kidney disease may affect as many as one in twelve people, and causes millions of deaths each year. Currently, the diagnosis of kidney function relies mainly on blood and urine tests, an indirect means of figuring out how well they’re working.



Standard MRI scanners, used to view many organs of the body, do not always show the whole picture for kidneys. This is because the MRI equipment found in hospitals and clinics works by imaging water molecules in the body. But in water-logged kidneys, the image may not distinguish between different functional parts. Now, Prof. Hadassa Degani of the Biological Regulation Department and her lab team have found a way to see into the kidneys using magnetic resonance imaging (MRI) that scans sodium ions rather than water.

Their method takes advantage of a unique feature of kidney function. Kidneys filter the blood and maintain steady levels of materials such as sodium and potassium in the bloodstream. To sustain control, these organs employ a gradient – a rising concentration of sodium from the outer layer, called the cortex, (where concentrations are around those of normal body tissues), towards the center, where levels reach up to five times the norm.


Prof. Degani, together with doctoral student Nimrod Maril and Raanan Margalit, was intrigued by a small number of MRI experiments that focus on sodium to attain images of various tissues, and wondered if the kidneys’ sodium gradient could be imaged, and if so, what the image would reveal about kidney function. They enlisted the help of Dr. Joel Mispelter from the Institut Curie in France to help them build the special accessory needed to detect the sodium. Working at a high resolution allowed them to pick up the fine details of changing sodium concentration, particularly localized variations in the sodium gradient.

First the team imaged a healthy rat kidney, showing, for the first time, the shape of the sodium gradient as it rises in a smooth slope from the outer layers inward. Next, they continued their work on kidneys with altered function to see how effective a diagnostic tool the sodium imaging is. When the kidneys were treated with one of two commonly used diuretic drugs, which increase water out-flow, not only did they see the gradient flatten, but they were able to trace, in detail, the actions of each drug over time. Blocked kidneys showed disruptions in sodium patterns as well, and the team was able to identify sections of kidney that retained healthy functioning and could return to normal once the block was removed, as opposed to those that had permanent damage.

While todays’ methods give estimates of kidney function in percentages, tomorrow’s doctors, using this painless, non-invasive MRI technique, may be able to pinpoint exactly where a problem lies, reveal a disease before symptoms occur, or evaluate how a drug affects a patient. "If we were able to see so much in a tiny rat kidney, think of how much more we can see in a human kidney," says Degani. "The method is so logical, it’s a wonder it had not been applied before."


Prof. Hadassa Degani’s research is supported by the M.D. Moross Institute for Cancer Research; Sir David Alliance, CBE, UK; Mr. and Mrs. Lon Morton, Calabasas, CA; Mrs. Jackie Gee, Ms. Livia Meyer and Mr. Harry Woolf, UK; Ms. Lynne Mochon and Ms. Edith Degani, NY, USA; the Washington Square Health Foundation; the Estate of Mrs. Ilse Katz, Switzerland; Dr. and Mrs. Leslie Bernstein, El Macero, CA; and The Skirball Foundation, NY, USA. Prof. Degani is the incumbent of the Fred and Andrea Fallek Professorial Chair in Breast Cancer Research. She heads the Willner Family Center for Vascular Biology.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>