Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salty scans

20.04.2004


Kidney disease may affect as many as one in twelve people, and causes millions of deaths each year. Currently, the diagnosis of kidney function relies mainly on blood and urine tests, an indirect means of figuring out how well they’re working.



Standard MRI scanners, used to view many organs of the body, do not always show the whole picture for kidneys. This is because the MRI equipment found in hospitals and clinics works by imaging water molecules in the body. But in water-logged kidneys, the image may not distinguish between different functional parts. Now, Prof. Hadassa Degani of the Biological Regulation Department and her lab team have found a way to see into the kidneys using magnetic resonance imaging (MRI) that scans sodium ions rather than water.

Their method takes advantage of a unique feature of kidney function. Kidneys filter the blood and maintain steady levels of materials such as sodium and potassium in the bloodstream. To sustain control, these organs employ a gradient – a rising concentration of sodium from the outer layer, called the cortex, (where concentrations are around those of normal body tissues), towards the center, where levels reach up to five times the norm.


Prof. Degani, together with doctoral student Nimrod Maril and Raanan Margalit, was intrigued by a small number of MRI experiments that focus on sodium to attain images of various tissues, and wondered if the kidneys’ sodium gradient could be imaged, and if so, what the image would reveal about kidney function. They enlisted the help of Dr. Joel Mispelter from the Institut Curie in France to help them build the special accessory needed to detect the sodium. Working at a high resolution allowed them to pick up the fine details of changing sodium concentration, particularly localized variations in the sodium gradient.

First the team imaged a healthy rat kidney, showing, for the first time, the shape of the sodium gradient as it rises in a smooth slope from the outer layers inward. Next, they continued their work on kidneys with altered function to see how effective a diagnostic tool the sodium imaging is. When the kidneys were treated with one of two commonly used diuretic drugs, which increase water out-flow, not only did they see the gradient flatten, but they were able to trace, in detail, the actions of each drug over time. Blocked kidneys showed disruptions in sodium patterns as well, and the team was able to identify sections of kidney that retained healthy functioning and could return to normal once the block was removed, as opposed to those that had permanent damage.

While todays’ methods give estimates of kidney function in percentages, tomorrow’s doctors, using this painless, non-invasive MRI technique, may be able to pinpoint exactly where a problem lies, reveal a disease before symptoms occur, or evaluate how a drug affects a patient. "If we were able to see so much in a tiny rat kidney, think of how much more we can see in a human kidney," says Degani. "The method is so logical, it’s a wonder it had not been applied before."


Prof. Hadassa Degani’s research is supported by the M.D. Moross Institute for Cancer Research; Sir David Alliance, CBE, UK; Mr. and Mrs. Lon Morton, Calabasas, CA; Mrs. Jackie Gee, Ms. Livia Meyer and Mr. Harry Woolf, UK; Ms. Lynne Mochon and Ms. Edith Degani, NY, USA; the Washington Square Health Foundation; the Estate of Mrs. Ilse Katz, Switzerland; Dr. and Mrs. Leslie Bernstein, El Macero, CA; and The Skirball Foundation, NY, USA. Prof. Degani is the incumbent of the Fred and Andrea Fallek Professorial Chair in Breast Cancer Research. She heads the Willner Family Center for Vascular Biology.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>