Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Researchers Improve Drought Tolerance in Plants

20.04.2004


Reducing Enzyme Involved in Recycling Vitamin C Increases a Plant’s Responsiveness to Drought Conditions



University of California, Riverside researchers reported the development of technology that increases crop drought tolerance by decreasing the amount of an enzyme that is responsible for recycling vitamin C.

Biochemist Daniel R. Gallie, a professor of biochemistry at the University of California, Riverside together with Zhong Chen of his research group reported their findings in the May issue of The Plant Cell .


In the study, the authors reasoned that decreasing the amount of the enzyme dehydroascorbate reductase or DHAR would reduce the ability of plants to recycle vitamin C, making them more drought tolerant through improved water conservation. The researchers accomplished this by using the plant’s own gene to decrease the amount of the enzyme three fold.

Researchers used tobacco as a model for crops that are highly sensitive to drought conditions.

“However, our discovery should be applicable to most if not all crop species as the role of vitamin C is highly conserved among plants,” said Gallie.
In work published last year in the Proceedings of the National Academy of Sciences, Gallie and his research team reported that the level of vitamin C could be boosted by increasing the amount of this same enzyme.

The U.S. Department of Agriculture and California Agricultural Experiment Station funded the six years of research that led to the current findings.

Vitamin C serves as an important antioxidant in plants as it does in humans and among its many functions in both, it destroys reactive oxygen species that can otherwise damage or even kill cells. “Once used, vitamin C must be regenerated otherwise it is irrevocably lost. The enzyme dehydroascorbate reductase, or DHAR, plays a critical role in this recycling process,” explained Gallie.

Reactive oxygen species are produced in plants typically following exposure to environmental conditions such as drought, cold, or air pollution. Plants sense drought conditions by the buildup in reactive oxygen species and then respond by reducing the amount of water that escapes from their leaves. Reducing the amount of DHAR decreases the ability of the plant to recycle vitamin C, thus reducing the ability to eliminate the buildup in reactive oxygen species that occurs with the onset of a drought.

“This reduction in vitamin C recycling causes plants to be highly responsive to dry growth conditions by reducing the rate of water that escapes from their leaves. Thus, they are better able to grow with less water and survive a drought,” said Gallie.

“Through use of this technology, we are helping crops to conserve water resources. In a way, we are assisting them to be better water managers, which is important for crops growing in areas that can experience erratic rainfall,” he added. “This discovery will assist farmers who depend on rainwater for their crops during those years when rainfall is low. It will also assist farmers who irrigate their crops to conserve water, which is important in a state like California where rapid population growth continues to increase the demand on this scare resource. Finally, this discovery should help farmers who grow crops in arid areas, such as exists in many third-world countries.”

The onset of global warming is another development that adds impact to Gallie’s research findings. The U.S. Environmental Protection Agency Web site states that the Earth’s surface temperature has risen by about one degree Fahrenheit in the past century, with most of the warming occurring during the past two decades. The EPA suggests that most of the warming over the last 50 years can be attributed to human activities, but cautions that uncertainties remain about exactly how earth’s climate is responding.

“Increasing drought tolerance in crops is highly valuable to U.S. and world agriculture now and will be even more critical as our environment continues to change as a consequence of global warming,” said Gallie.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=781

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>