Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC Riverside Researchers Improve Drought Tolerance in Plants


Reducing Enzyme Involved in Recycling Vitamin C Increases a Plant’s Responsiveness to Drought Conditions

University of California, Riverside researchers reported the development of technology that increases crop drought tolerance by decreasing the amount of an enzyme that is responsible for recycling vitamin C.

Biochemist Daniel R. Gallie, a professor of biochemistry at the University of California, Riverside together with Zhong Chen of his research group reported their findings in the May issue of The Plant Cell .

In the study, the authors reasoned that decreasing the amount of the enzyme dehydroascorbate reductase or DHAR would reduce the ability of plants to recycle vitamin C, making them more drought tolerant through improved water conservation. The researchers accomplished this by using the plant’s own gene to decrease the amount of the enzyme three fold.

Researchers used tobacco as a model for crops that are highly sensitive to drought conditions.

“However, our discovery should be applicable to most if not all crop species as the role of vitamin C is highly conserved among plants,” said Gallie.
In work published last year in the Proceedings of the National Academy of Sciences, Gallie and his research team reported that the level of vitamin C could be boosted by increasing the amount of this same enzyme.

The U.S. Department of Agriculture and California Agricultural Experiment Station funded the six years of research that led to the current findings.

Vitamin C serves as an important antioxidant in plants as it does in humans and among its many functions in both, it destroys reactive oxygen species that can otherwise damage or even kill cells. “Once used, vitamin C must be regenerated otherwise it is irrevocably lost. The enzyme dehydroascorbate reductase, or DHAR, plays a critical role in this recycling process,” explained Gallie.

Reactive oxygen species are produced in plants typically following exposure to environmental conditions such as drought, cold, or air pollution. Plants sense drought conditions by the buildup in reactive oxygen species and then respond by reducing the amount of water that escapes from their leaves. Reducing the amount of DHAR decreases the ability of the plant to recycle vitamin C, thus reducing the ability to eliminate the buildup in reactive oxygen species that occurs with the onset of a drought.

“This reduction in vitamin C recycling causes plants to be highly responsive to dry growth conditions by reducing the rate of water that escapes from their leaves. Thus, they are better able to grow with less water and survive a drought,” said Gallie.

“Through use of this technology, we are helping crops to conserve water resources. In a way, we are assisting them to be better water managers, which is important for crops growing in areas that can experience erratic rainfall,” he added. “This discovery will assist farmers who depend on rainwater for their crops during those years when rainfall is low. It will also assist farmers who irrigate their crops to conserve water, which is important in a state like California where rapid population growth continues to increase the demand on this scare resource. Finally, this discovery should help farmers who grow crops in arid areas, such as exists in many third-world countries.”

The onset of global warming is another development that adds impact to Gallie’s research findings. The U.S. Environmental Protection Agency Web site states that the Earth’s surface temperature has risen by about one degree Fahrenheit in the past century, with most of the warming occurring during the past two decades. The EPA suggests that most of the warming over the last 50 years can be attributed to human activities, but cautions that uncertainties remain about exactly how earth’s climate is responding.

“Increasing drought tolerance in crops is highly valuable to U.S. and world agriculture now and will be even more critical as our environment continues to change as a consequence of global warming,” said Gallie.

Ricardo Duran | UC Riverside
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>