Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewriting Textbooks on DNA Crossover

19.04.2004


Key decisions in the genetic shuffling that occurs before eggs or sperm are formed are made earlier than thought, rewriting textbook genetics, according to recent papers from researchers at UC Davis, Harvard University and UC San Diego.

For sexual reproduction to occur, organisms have to form gametes (in animals, gametes are eggs or sperm) with half the usual number of chromosomes, so that when two gametes fuse during fertilization the offspring will have an equal genetic contribution from each parent. This process is called meiosis: Without it, the chromosome number would double with every generation.

Meiosis includes a crucial step in which DNA is broken and either repaired by "crossing over" with another chromosome or healed without a crossover. Each pair of chromosomes must have at least one crossover for meiosis to work. New research shows that the decision to make a crossover or not is made much earlier than previously thought, and sheds light on the molecular basis of this process.



Exchanging DNA

Two copies of each chromosome are present in each body cell. During meiosis, each chromosome lines up with its partner, and the DNA molecules are cut in several places. The partner chromosome DNA acts as a template to heal the breaks. This process, known as homologous recombination, can result in the exchange of chunks of DNA between chromosome arms -- a crossover. Or a break can be healed without exchanging DNA to give a non-crossover recombination.

Recombination stabilizes chromosome pairing, and crossovers are specifically required for the accurate distribution of chromosomes into the gamete cells, said Neil Hunter, assistant professor of microbiology at UC Davis. If the process fails, a gamete might end up with the wrong number of chromosomes, potentially leading to birth defects such as Down syndrome.

How chromosomes decide to make a crossover or non-crossover recombination has been "something of a mystery," Hunter said.

The textbook explanation has been that the linked DNA strands form structures called Holliday junctions that on paper can be processed in two different ways to create either a crossover or non-crossover. This model implies that the decision is made at a very late step, Hunter said.

Working in the brewer’s yeast Saccharomyces cerevisiae, Hunter and colleagues Valentin Boerner and Nancy Kleckner of Harvard University, writing in the April 1 issue of Cell, show instead that the decision on whether or not to crossover is made at a much earlier stage: after the DNA is broken but before the ends of the breaks become stably intertwined with their partner chromosome. Once the decision is made, chromosomes are shepherded along to form Holliday junctions and then crossovers by a group of six proteins called the ZMMs.

In the same issue of Cell, Olga Mazina, Alexander Mazin and Stephen Kowalczykowski from UC Davis with Takuro Nakagawa and Richard Kolodner from the Ludwig Institute of Cancer Research at UC San Diego studied one of the ZMM proteins, Mer3, known to be important for crossover recombination to occur. They found that Mer3 unwinds the DNA double helix but works only in one direction relative to the broken DNA end. It blocks extension of the DNA strand in the opposite direction. Mer3 therefore helps to stabilize the Holliday junction structure and promotes crossover recombination, Hunter said.

The findings mean that the pathways to crossover and non-crossover recombination are distinct, and distinct from an early stage, Hunter said. That turns the textbook account of meiosis on its head, he said.

While researchers now have a better understanding of the process, how the decision is made remains a mystery, Hunter said.

"We’re getting insights, but we’re left with big questions," he said.

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6992

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>