Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewriting Textbooks on DNA Crossover

19.04.2004


Key decisions in the genetic shuffling that occurs before eggs or sperm are formed are made earlier than thought, rewriting textbook genetics, according to recent papers from researchers at UC Davis, Harvard University and UC San Diego.

For sexual reproduction to occur, organisms have to form gametes (in animals, gametes are eggs or sperm) with half the usual number of chromosomes, so that when two gametes fuse during fertilization the offspring will have an equal genetic contribution from each parent. This process is called meiosis: Without it, the chromosome number would double with every generation.

Meiosis includes a crucial step in which DNA is broken and either repaired by "crossing over" with another chromosome or healed without a crossover. Each pair of chromosomes must have at least one crossover for meiosis to work. New research shows that the decision to make a crossover or not is made much earlier than previously thought, and sheds light on the molecular basis of this process.



Exchanging DNA

Two copies of each chromosome are present in each body cell. During meiosis, each chromosome lines up with its partner, and the DNA molecules are cut in several places. The partner chromosome DNA acts as a template to heal the breaks. This process, known as homologous recombination, can result in the exchange of chunks of DNA between chromosome arms -- a crossover. Or a break can be healed without exchanging DNA to give a non-crossover recombination.

Recombination stabilizes chromosome pairing, and crossovers are specifically required for the accurate distribution of chromosomes into the gamete cells, said Neil Hunter, assistant professor of microbiology at UC Davis. If the process fails, a gamete might end up with the wrong number of chromosomes, potentially leading to birth defects such as Down syndrome.

How chromosomes decide to make a crossover or non-crossover recombination has been "something of a mystery," Hunter said.

The textbook explanation has been that the linked DNA strands form structures called Holliday junctions that on paper can be processed in two different ways to create either a crossover or non-crossover. This model implies that the decision is made at a very late step, Hunter said.

Working in the brewer’s yeast Saccharomyces cerevisiae, Hunter and colleagues Valentin Boerner and Nancy Kleckner of Harvard University, writing in the April 1 issue of Cell, show instead that the decision on whether or not to crossover is made at a much earlier stage: after the DNA is broken but before the ends of the breaks become stably intertwined with their partner chromosome. Once the decision is made, chromosomes are shepherded along to form Holliday junctions and then crossovers by a group of six proteins called the ZMMs.

In the same issue of Cell, Olga Mazina, Alexander Mazin and Stephen Kowalczykowski from UC Davis with Takuro Nakagawa and Richard Kolodner from the Ludwig Institute of Cancer Research at UC San Diego studied one of the ZMM proteins, Mer3, known to be important for crossover recombination to occur. They found that Mer3 unwinds the DNA double helix but works only in one direction relative to the broken DNA end. It blocks extension of the DNA strand in the opposite direction. Mer3 therefore helps to stabilize the Holliday junction structure and promotes crossover recombination, Hunter said.

The findings mean that the pathways to crossover and non-crossover recombination are distinct, and distinct from an early stage, Hunter said. That turns the textbook account of meiosis on its head, he said.

While researchers now have a better understanding of the process, how the decision is made remains a mystery, Hunter said.

"We’re getting insights, but we’re left with big questions," he said.

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6992

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>