Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do animals exposed to 24-hour light retain their wake-sleep habits?

19.04.2004


The phrase "biological clock" has expanded from scientific observation to American slang. When we hear this phrase, many of us assume it refers to the amount of time left for a woman to start a family. For the scientist, the biological clock refers to a process that took millions of years to evolve – the conditioning of plants and animals by a light cycle that starts with dawn and ends with sunset.



The cycle of dawn and dusk changes with the seasons everywhere in the world (except at the equator, where there is always 12 hours of daylight and 12 hours of darkness). In order to compensate for the seasonal variations of light, mammals likely have an adjustable daily program under the regulation of a biological clock.

But how do mammals in the Arctic – which is characterized by months of full light followed by months of full darkness -- retain their sleep and awake habits in such unusual circumstances? After analyzing the reactions of certain mammals following 82 days of continuous daylight in the summer and 82 days of continuous darkness in the winter, a team of researchers may have begun to identify a clue.


A New Study

The research is captured in a presentation entitled, "Cardiac Physiology of Mammals in Arctic Light Cycle: Heart Rates and Biological Clocks." The authors, G. Edgar Folk, Diana L. Thrift, James B. Martins, and Miriam B. Zimmerman, all from the University of Iowa, Iowa City, IA, will present their findings at the American Physiological Society’s (APS)(www.the-aps.org) annual scientific conference, Experimental Biology 2004, being held April 17-21, 2004, at the Washington, D.C. Convention Center.

Methodology and Results

The researchers analyzed the biological clocks using cardiac physiology. They recorded the mammals’ daily circadian rhythm using heart rate to show the rhythm of sleep and wakefulness.

Control laboratory rats (N=4) were exposed to artificial continuous light and demonstrated the Aschoff effect, where the circadian activity pattern changes quantitatively with the intensity of the light. This group took on a 26-hour day.

This was not the case when the experiment was repeated in the field at the Naval Arctic Research Laboratory - with two species of Arctic rodents exposed to continuous daylight (nocturnal porcupines [Erethizon] N=4, and hibernators, the Arctic ground squirrel [Spermophilis] N=6). Under these circumstances, both species had a specific time of sleep and of wakefulness. In fact, the Arctic rodents, which had undergone 82 days of continuous sun above the horizon, had a crisp, 24-hour day-night rhythm of sleep and wakefulness.

Conclusions

The free-living animals in the Arctic had regular sleep-awake cycles, despite having 82 days of continuous sun. The intriguing question is whether or not these animals have found a clue in the external environment to take the place of the missing sunset. The researchers hypothesize that because the sun during this period is nearer the horizon at one part of the day, this might act as a clue for the biological clocks.

As the American economy requires its work force to abandon traditional work hours of "nine to five," it becomes more important for us to understand how the body’s biological clock can respond to unnatural light clues and adapt to a changing environment. This study is another step in the continuing research towards such comprehension.


The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 11,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Editor’s Note: For further information or to schedule an interview with a member of the research team, please contact Donna Krupa at 703-967-2751 (cell), 703-527-7357 (office) or at djkrupa1@aol.com. Or contact the APS newsroom at 202-249-4009 between 9:00 AM and 6:00 PM EDT April 17-21, 2004.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>