Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome ’Caps’ Predict Bone Marrow Disease

19.04.2004


For the first time, Imperial College London researchers at the Hammersmith Hospital studying a rare bone marrow disease have found an association between ’telomere shortening’ - changes in the lengths of DNA repeats at the end of chromosomes - and the time of development and severity of disease symptoms in patients.



Reporting in Nature Genetics today (18 April 2004), the Hammersmith team, collaborating with scientists at the Washington University School of Medicine in the USA, is hoping that the findings could lead to better screening for this and other diseases, as well as suggest targets for new therapies.

Dyskeratosis congenita (DC) is a rare but serious inherited condition where the body is unable to make adequate numbers of blood cells. It can lead to bone marrow failure and a much higher risk of developing cancer. People with DC also have a mutation in an enzyme (telomerase) which repairs telomeres (sections of DNA repeats which ’cap’ the ends of chromosomes) and as a result, telomere length in their chromosomes is shorter.


In families with a history of a certain type of the disease, autosomal dominant DC, the disease becomes more severe in succeeding generations.

"We found when we looked at the DNA of families that suffer from the disease, the telomere length gave an indication of how soon and how severely patients were likely to get the disease," said Inderjeet Dokal, Professor of Haematology at Imperial College London and one of the authors of the study. "This ’disease anticipation’ was only thought to occur in specific neurological diseases until now."

The researchers propose that the shortening of the DNA repeats in
telomeres may be responsible for disease anticipation. They investigated the telomere lengths and disease status of 27 affected individuals from eight families with the autosomal dominant sub-type of DC and compared this to telomere length measurements in normal families. "The findings of this study provides a novel mechanism for disease anticipation in humans," explains Professor Doka.

Tony Stephenson | alfa
Further information:
http://dx.doi.org/10.1038/ng1346
http://www.innovations-report.com/html/profiles/profile-1221.html

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>