Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene plays major role in formation of stem cells and cancer

14.04.2004


Researchers from the Netherlands Cancer Institute in Amsterdam have discovered a common link between cancer cells and stem cells. Together with colleagues from the University of Zurich, Merel Lingbeek and NWO pioneer Prof. Maarten van Lohuizen published their findings on 18 March 2004 in Nature.

Because cancer cells and stem cells can both reproduce themselves in unlimited numbers, it was suspected that they have something in common. That suspicion proved to be correct. Together with their Swiss colleagues, researchers from the Netherlands Cancer Institute discovered an important common link: the BMI1 gene.

Stem cells, the ’original cells’, develop into specialised body cells by first of all making many copies of themselves. Once this copying process has been completed, they stop dividing and start differentiating into specialised cells, for example, a brain cell. But sometimes this process goes wrong. Instead of differentiating, the stem cells retain the expression pattern of a stem cell and keep on copying themselves. This is how medulloblastomas, the most frequently occurring form of brain cancer in children, can develop.



Determining stem cell identity

The publication in Nature reveals that the BMI gene plays a crucial role in this switching process. Together with Swiss colleagues Carly Leung and Silvia Marino, Merel Lingbeek and Prof. Maarten van Lohuizen investigated the formation of brain cells from stem cells in the cerebellum.

The research revealed that the BMI1 gene is essential for the multiplication of the stem cells in the cerebellum. Further it was found that overexpression of the BMI1 gene can result in an enormous growth of these stem cells. For example, overexpression of the BMI1 gene was found in 8 of the 12 medulloblastomas investigated. The BMI1 gene was found to determine the identity of the stem cell: the gene ensures that a stem cell remains a stem cell and does not differentiate. The researchers therefore suspect that an overexpression of the BMI1 gene contributes to the development of these brain tumours.

Subsequent research

The researchers expect that the BMI1 gene plays a role in other types of cancer with stem-cell-like characteristics, including breast tumours and leukaemia. These assumptions will be investigated in subsequent research, which will also examine whether key regulators such as the BMI1 gene can be influenced by drugs.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/nwop_5x7d2c_eng

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>