Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Batch control makes chemical reactions easier to manage

14.04.2004


Two Dutch researchers have developed a method for managing so-called batch productions. During a batch production, substances react in a reactor vessel according to a certain recipe to produce an end product. After the reaction the reactor is emptied and a new reaction with the same recipe is started.



Chemist Eric van Sprang and chemical engineer Henk-Jan Ramaker have developed a control method that also takes the relationship between various process parameters into account. The current methods of process control monitor all of the parameters during the reaction, such as pressure and temperature, separately. As a result of this the control process costs a lot of time and not all of the process disruptions are clearly visible.

Batch control is important for safety, the environment and product quality. The quality of the product made in a batch process depends on the various parameters involved in the chemical reaction. However, these parameters are never the same for all batches.


The researchers made a model to predict how large the variations can be without endangering the quality of the product. They first of all collected the process parameters from more than thirty batches and then described the process variation with the help of a model. Finally, they used this model to make two control cards that an operator can use to control the process. If the process parameters of the reaction remain within the control limits, the process is proceeding as intended. If that is not the case, there is a process disruption.

Traditionally factories control a chemical process by monitoring several parameters such as pressure and temperature. These are measured by sensors in the reactor. The outcome of each separate measurement is noted on a so-called univariate control chart. Therefore several charts are needed to monitor several variables and this means that the relationships between different parameters are ignored. For example, if the pressure in the reactor vessel increases, the temperature often rises as well. However, if this relationship no longer holds due to a process disruption, univariate control charts might not detect this.

However, the new method from Sprang and Ramaker takes the relationships between process parameters into account. With this method the process operator in the control room only needs to monitor two control cards. The early and reliable detection of process disruptions leads to indirect cost savings on the process. Therefore it is essential to choose as good a model as possible in combination with the correct statistics.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/nwop_5xkj4c_eng

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>