Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of specific brain protein causes marked deficits in learning, memory

08.04.2004


A protein involved in the release of neurotransmitters in the brain is essential to learning and memory in mice, researchers at UT Southwestern Medical Center at Dallas have found.



A study published today in Neuron offers the first evidence that lack of this protein – known as RIM1 alpha – causes profound deficits in the learning process. The discovery is a major step in understanding the molecular events that underlie learning and memory – complex processes that can be impaired in human neuropsychiatric disorders such as Alzheimer’s disease, mental retardation and schizophrenia.

"We found that when you delete this molecule, the mice essentially become incredibly stupid," said Dr. Thomas Südhof, director of both the Center for Basic Neuroscience and the C. Vincent Prothro Center for Research in Basic Neuroscience at UT Southwestern and co-author of the paper.


Researchers hope that further study of the protein’s role in learning and memory will lead to potential treatments for some neuropsychiatric disorders.

"This is the first indication that these proteins could be good targets for treatment of specific brain disorders," said Dr. Craig Powell, assistant professor of psychiatry and neurology at UT Southwestern and the study’s lead author.

The researchers compared behaviors of normal mice to those of three sets of genetically altered mice – each of which was missing a specific protein involved in releasing neurotransmitters. The mice lacking the RIM1 alpha protein, unlike the others, lacked the ability to learn the location of an escape platform in a pool of water despite repeated attempts over several days.

Dr. Eric Nestler, chairman of psychiatry at UT Southwestern and senior author of the study, said another notable finding was that, while the other two sets of genetically altered mice displayed some of the same cellular abnormalities as the RIM1 alpha mice, these other mice exhibited no behavioral deficits.

"The brain was able to compensate for the loss of these other two proteins, but it was not able to compensate for the lack of RIM1 alpha," Dr. Nestler said. "That tells us that RIM1 alpha is involved in so many important functions that, when it is missing, gross changes in behavior occur."

Proteins involved in the release of neurotransmitters are known as presynaptic proteins. In the past, postsynaptic proteins, as opposed to presynaptic proteins, were shown to play an active role in learning and memory. Postsynaptic proteins receive the neurotransmitters released by presynaptic proteins.

Dr. Nestler said that some of the abnormalities in learning in the mice lacking RIM1 alpha are reminiscent of symptoms commonly seen in people with schizophrenia.

"This could give us new insight into what’s going wrong in the brains of people with schizophrenia – a disorder that is still not at all well understood," Dr. Nestler said.


These studies were funded via grants from the National Institute of Mental Health, The National Alliance for Research on Schizophrenia and Depression, and the Howard Hughes Medical Institute.

Rachel Horton | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>