Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of specific brain protein causes marked deficits in learning, memory

08.04.2004


A protein involved in the release of neurotransmitters in the brain is essential to learning and memory in mice, researchers at UT Southwestern Medical Center at Dallas have found.



A study published today in Neuron offers the first evidence that lack of this protein – known as RIM1 alpha – causes profound deficits in the learning process. The discovery is a major step in understanding the molecular events that underlie learning and memory – complex processes that can be impaired in human neuropsychiatric disorders such as Alzheimer’s disease, mental retardation and schizophrenia.

"We found that when you delete this molecule, the mice essentially become incredibly stupid," said Dr. Thomas Südhof, director of both the Center for Basic Neuroscience and the C. Vincent Prothro Center for Research in Basic Neuroscience at UT Southwestern and co-author of the paper.


Researchers hope that further study of the protein’s role in learning and memory will lead to potential treatments for some neuropsychiatric disorders.

"This is the first indication that these proteins could be good targets for treatment of specific brain disorders," said Dr. Craig Powell, assistant professor of psychiatry and neurology at UT Southwestern and the study’s lead author.

The researchers compared behaviors of normal mice to those of three sets of genetically altered mice – each of which was missing a specific protein involved in releasing neurotransmitters. The mice lacking the RIM1 alpha protein, unlike the others, lacked the ability to learn the location of an escape platform in a pool of water despite repeated attempts over several days.

Dr. Eric Nestler, chairman of psychiatry at UT Southwestern and senior author of the study, said another notable finding was that, while the other two sets of genetically altered mice displayed some of the same cellular abnormalities as the RIM1 alpha mice, these other mice exhibited no behavioral deficits.

"The brain was able to compensate for the loss of these other two proteins, but it was not able to compensate for the lack of RIM1 alpha," Dr. Nestler said. "That tells us that RIM1 alpha is involved in so many important functions that, when it is missing, gross changes in behavior occur."

Proteins involved in the release of neurotransmitters are known as presynaptic proteins. In the past, postsynaptic proteins, as opposed to presynaptic proteins, were shown to play an active role in learning and memory. Postsynaptic proteins receive the neurotransmitters released by presynaptic proteins.

Dr. Nestler said that some of the abnormalities in learning in the mice lacking RIM1 alpha are reminiscent of symptoms commonly seen in people with schizophrenia.

"This could give us new insight into what’s going wrong in the brains of people with schizophrenia – a disorder that is still not at all well understood," Dr. Nestler said.


These studies were funded via grants from the National Institute of Mental Health, The National Alliance for Research on Schizophrenia and Depression, and the Howard Hughes Medical Institute.

Rachel Horton | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>