Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of specific brain protein causes marked deficits in learning, memory

08.04.2004


A protein involved in the release of neurotransmitters in the brain is essential to learning and memory in mice, researchers at UT Southwestern Medical Center at Dallas have found.



A study published today in Neuron offers the first evidence that lack of this protein – known as RIM1 alpha – causes profound deficits in the learning process. The discovery is a major step in understanding the molecular events that underlie learning and memory – complex processes that can be impaired in human neuropsychiatric disorders such as Alzheimer’s disease, mental retardation and schizophrenia.

"We found that when you delete this molecule, the mice essentially become incredibly stupid," said Dr. Thomas Südhof, director of both the Center for Basic Neuroscience and the C. Vincent Prothro Center for Research in Basic Neuroscience at UT Southwestern and co-author of the paper.


Researchers hope that further study of the protein’s role in learning and memory will lead to potential treatments for some neuropsychiatric disorders.

"This is the first indication that these proteins could be good targets for treatment of specific brain disorders," said Dr. Craig Powell, assistant professor of psychiatry and neurology at UT Southwestern and the study’s lead author.

The researchers compared behaviors of normal mice to those of three sets of genetically altered mice – each of which was missing a specific protein involved in releasing neurotransmitters. The mice lacking the RIM1 alpha protein, unlike the others, lacked the ability to learn the location of an escape platform in a pool of water despite repeated attempts over several days.

Dr. Eric Nestler, chairman of psychiatry at UT Southwestern and senior author of the study, said another notable finding was that, while the other two sets of genetically altered mice displayed some of the same cellular abnormalities as the RIM1 alpha mice, these other mice exhibited no behavioral deficits.

"The brain was able to compensate for the loss of these other two proteins, but it was not able to compensate for the lack of RIM1 alpha," Dr. Nestler said. "That tells us that RIM1 alpha is involved in so many important functions that, when it is missing, gross changes in behavior occur."

Proteins involved in the release of neurotransmitters are known as presynaptic proteins. In the past, postsynaptic proteins, as opposed to presynaptic proteins, were shown to play an active role in learning and memory. Postsynaptic proteins receive the neurotransmitters released by presynaptic proteins.

Dr. Nestler said that some of the abnormalities in learning in the mice lacking RIM1 alpha are reminiscent of symptoms commonly seen in people with schizophrenia.

"This could give us new insight into what’s going wrong in the brains of people with schizophrenia – a disorder that is still not at all well understood," Dr. Nestler said.


These studies were funded via grants from the National Institute of Mental Health, The National Alliance for Research on Schizophrenia and Depression, and the Howard Hughes Medical Institute.

Rachel Horton | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>