Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene with key role in replicating pox viruses also halts inflammation


Scientists at the University of Illinois at Urbana-Champaign studying vaccinia virus, a close relative of smallpox, have determined that a gene necessary for virus replication also has a key role in turning off inflammation, a crucial anti-viral immune response of host cells.

The discovery, reported this month in the Journal of Virology, potentially broadens the knowledge base of how all poxviruses cause disease and how they may be outwitted by improvements in vaccines against them, said Joanna L. Shisler, a professor of microbiology in the College of Medicine at Urbana-Champaign.

"If we can find out how the virus evades immune responses and learn more about the signals the virus sees as necessary for replicating within the host cell, then we can figure out how to inhibit them and halt the viral replication," she said.

Post 9-11 fears of bioterrorism by means of the deliberate introduction of smallpox have spawned renewed interest in new, safer vaccines against the deadly disease, which was eradicated as a naturally occurring danger in 1977. Some U.S. medical workers and military personnel have received vaccinations made of the live vaccinia virus, but while this tamer relative of smallpox normally doesn’t cause disease, complications, including death, are possible especially among immune-compromised individuals.

The vaccinia virus genome is 97 percent genetically identical to the smallpox genome, making it an ideal model virus to use in the laboratory to understand how smallpox and other dangerous poxviruses function, Shisler said.

In their research, Shisler and Xiao-Lu Jin, a research specialist in microbiology, found that a 5.2 kb segment of vaccinia virus DNA containing six genes was responsible for inhibiting a key cellular transcription factor called NF kappa B (NF-kB).

NF-kB serves to turn on other host cell genes involved in anti-viral immune responses and inflammation.

The researchers then sought to determine what specific genes in the segment inhibit NF-kB activation. To carry out the study, they introduced individual genes from the 5.2kb segment into a mutant poxvirus vector that activates NF-kB.

They infected human and rabbit cell lines with the new recombinant viruses and detected NF-kB activity levels. They found that the recombinant virus containing the introduced K1L gene prevented degradation of the cellular inhibitor of NF-kB, therefore inhibiting NF-kB’s ability to ignite immune responses.

Since the 1980s it was known that K1L was necessary for vaccinia virus replication. The additional function of K1L, as determined in the new study, suggests that poxviruses may need to turn NF-kB on and off at crucial times to regulate replication.

Understanding the molecular machinery involved may make it possible to eventually manufacture safer vaccines for smallpox and vaccinia-based vaccines for HIV by specifically manipulating genes, Shisler said.

Because the K1L gene inhibited NF-kB activation in numerous cell lines tested, it suggests that its activity is global. Since this study was completed, the researchers subsequently have found a second protein that inhibits NF-kB, suggesting there may be multiple genes at work, Shisler said.

"These viral proteins are present in smallpox, monkey pox and many other poxes, and they are very homologous," she said. "If we know how these proteins function, we can start figuring out why smallpox and monkey pox cause disease."

The Roy J. Carver Charitable Trust of Muscatine, Iowa, funded the research.

Jim Barlow | UIUC
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>