Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene with key role in replicating pox viruses also halts inflammation

07.04.2004


Scientists at the University of Illinois at Urbana-Champaign studying vaccinia virus, a close relative of smallpox, have determined that a gene necessary for virus replication also has a key role in turning off inflammation, a crucial anti-viral immune response of host cells.



The discovery, reported this month in the Journal of Virology, potentially broadens the knowledge base of how all poxviruses cause disease and how they may be outwitted by improvements in vaccines against them, said Joanna L. Shisler, a professor of microbiology in the College of Medicine at Urbana-Champaign.

"If we can find out how the virus evades immune responses and learn more about the signals the virus sees as necessary for replicating within the host cell, then we can figure out how to inhibit them and halt the viral replication," she said.


Post 9-11 fears of bioterrorism by means of the deliberate introduction of smallpox have spawned renewed interest in new, safer vaccines against the deadly disease, which was eradicated as a naturally occurring danger in 1977. Some U.S. medical workers and military personnel have received vaccinations made of the live vaccinia virus, but while this tamer relative of smallpox normally doesn’t cause disease, complications, including death, are possible especially among immune-compromised individuals.

The vaccinia virus genome is 97 percent genetically identical to the smallpox genome, making it an ideal model virus to use in the laboratory to understand how smallpox and other dangerous poxviruses function, Shisler said.

In their research, Shisler and Xiao-Lu Jin, a research specialist in microbiology, found that a 5.2 kb segment of vaccinia virus DNA containing six genes was responsible for inhibiting a key cellular transcription factor called NF kappa B (NF-kB).

NF-kB serves to turn on other host cell genes involved in anti-viral immune responses and inflammation.

The researchers then sought to determine what specific genes in the segment inhibit NF-kB activation. To carry out the study, they introduced individual genes from the 5.2kb segment into a mutant poxvirus vector that activates NF-kB.

They infected human and rabbit cell lines with the new recombinant viruses and detected NF-kB activity levels. They found that the recombinant virus containing the introduced K1L gene prevented degradation of the cellular inhibitor of NF-kB, therefore inhibiting NF-kB’s ability to ignite immune responses.

Since the 1980s it was known that K1L was necessary for vaccinia virus replication. The additional function of K1L, as determined in the new study, suggests that poxviruses may need to turn NF-kB on and off at crucial times to regulate replication.

Understanding the molecular machinery involved may make it possible to eventually manufacture safer vaccines for smallpox and vaccinia-based vaccines for HIV by specifically manipulating genes, Shisler said.

Because the K1L gene inhibited NF-kB activation in numerous cell lines tested, it suggests that its activity is global. Since this study was completed, the researchers subsequently have found a second protein that inhibits NF-kB, suggesting there may be multiple genes at work, Shisler said.

"These viral proteins are present in smallpox, monkey pox and many other poxes, and they are very homologous," she said. "If we know how these proteins function, we can start figuring out why smallpox and monkey pox cause disease."


The Roy J. Carver Charitable Trust of Muscatine, Iowa, funded the research.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0406poxgene.html

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>