Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene with key role in replicating pox viruses also halts inflammation

07.04.2004


Scientists at the University of Illinois at Urbana-Champaign studying vaccinia virus, a close relative of smallpox, have determined that a gene necessary for virus replication also has a key role in turning off inflammation, a crucial anti-viral immune response of host cells.



The discovery, reported this month in the Journal of Virology, potentially broadens the knowledge base of how all poxviruses cause disease and how they may be outwitted by improvements in vaccines against them, said Joanna L. Shisler, a professor of microbiology in the College of Medicine at Urbana-Champaign.

"If we can find out how the virus evades immune responses and learn more about the signals the virus sees as necessary for replicating within the host cell, then we can figure out how to inhibit them and halt the viral replication," she said.


Post 9-11 fears of bioterrorism by means of the deliberate introduction of smallpox have spawned renewed interest in new, safer vaccines against the deadly disease, which was eradicated as a naturally occurring danger in 1977. Some U.S. medical workers and military personnel have received vaccinations made of the live vaccinia virus, but while this tamer relative of smallpox normally doesn’t cause disease, complications, including death, are possible especially among immune-compromised individuals.

The vaccinia virus genome is 97 percent genetically identical to the smallpox genome, making it an ideal model virus to use in the laboratory to understand how smallpox and other dangerous poxviruses function, Shisler said.

In their research, Shisler and Xiao-Lu Jin, a research specialist in microbiology, found that a 5.2 kb segment of vaccinia virus DNA containing six genes was responsible for inhibiting a key cellular transcription factor called NF kappa B (NF-kB).

NF-kB serves to turn on other host cell genes involved in anti-viral immune responses and inflammation.

The researchers then sought to determine what specific genes in the segment inhibit NF-kB activation. To carry out the study, they introduced individual genes from the 5.2kb segment into a mutant poxvirus vector that activates NF-kB.

They infected human and rabbit cell lines with the new recombinant viruses and detected NF-kB activity levels. They found that the recombinant virus containing the introduced K1L gene prevented degradation of the cellular inhibitor of NF-kB, therefore inhibiting NF-kB’s ability to ignite immune responses.

Since the 1980s it was known that K1L was necessary for vaccinia virus replication. The additional function of K1L, as determined in the new study, suggests that poxviruses may need to turn NF-kB on and off at crucial times to regulate replication.

Understanding the molecular machinery involved may make it possible to eventually manufacture safer vaccines for smallpox and vaccinia-based vaccines for HIV by specifically manipulating genes, Shisler said.

Because the K1L gene inhibited NF-kB activation in numerous cell lines tested, it suggests that its activity is global. Since this study was completed, the researchers subsequently have found a second protein that inhibits NF-kB, suggesting there may be multiple genes at work, Shisler said.

"These viral proteins are present in smallpox, monkey pox and many other poxes, and they are very homologous," she said. "If we know how these proteins function, we can start figuring out why smallpox and monkey pox cause disease."


The Roy J. Carver Charitable Trust of Muscatine, Iowa, funded the research.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0406poxgene.html

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>