Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers reveal mechanisms of smooth-muscle contraction

06.04.2004


Researchers at UT Southwestern Medical Center at Dallas are the first to use genetically engineered mice containing a fluorescent molecule to examine in real time the chemical reactions that result in smooth-muscle contraction.


UT Southwestern’s Dr. Kristine Kamm (left), associate professor of physiology, Dr. Yusuke Mizuno, postdoctoral researcher, and Dr. James Stull, chairman of physiology, analyze data from recent experiments investigating how smooth-muscle cells contract.



Smooth muscle, found in the walls of blood vessels and in internal organs such as lungs, stomach and the bladder, contracts as the end result of a series of chemical reactions. In a new study, UT Southwestern researchers report that one set of chemical reactions resulting in the contraction of the smooth-muscle cells is augmented by a second chemical pathway that kicks in when the first pathway is limited.

"Understanding the underlying chemical signals involved in this process may have implications in treating conditions such as hypertension and other smooth muscle related conditions where there is too much contractile activity," said Dr. James Stull, chairman of physiology at UT Southwestern and senior author of the study.


The research appears in an upcoming issue of the Proceedings of the National Academy of Sciences and was to be posted online this week.

Dr. Stull and his colleagues discovered that when one of the chemicals in the primary contraction mechanism – a protein called calmodulin – is in short supply, a second series of chemical reactions kicks in to take up the slack. The result is that the strength of the contraction of smooth-muscle cells remains robust.

The first step in the primary chemical pathway for muscle contraction is for calcium in the muscle cell to combine with calmodulin. Then, the calcium/calmodulin complex "activates" a protein called myosin light chain kinase (MLCK). If not activated, MLCK cannot transfer phosphate to the motor protein myosin. Myosin needs the phosphate – in a process called phosphorylation – to initiate contraction in smooth-muscle cells.

When the researchers treated smooth muscle cells from mice with the drug carbachol, the amount of calcium available within the cells increased. Because there is much more calmodulin than MLCK in cells, they expected the increase in calcium to lead to more MLCK activation, and that therefore the contraction would be stronger.

The researchers saw the strong muscle contraction, but they only saw a small increase in MLCK activation, not enough to account for the muscle response. They discovered that because MLCK was competing for calmodulin with other calmodulin-binding proteins, there was only enough calmodulin available in this system to activate a small portion of the MLCK.

"Surprisingly, there is not enough calmodulin for all of its targets," Dr. Stull said. "So the signaling system has recruited a second pathway to enhance the limited activation of MLCK, which leads to a strong muscle contraction."

At the end of the primary chemical pathway, an enzyme called phosphatase can remove the phosphate from the myosin, hampering the muscle cell contraction. But the second chemical pathway inhibits the phosphatase from removing the phosphate.

"In this second pathway, the phosphates are no longer taken away from the myosin, which allows more phosphorylated myosin to remain, leading to a stronger muscle contraction," Dr. Stull said.

To track the progress of this intricate chemical dance, researchers genetically engineered a mouse containing a fluorescent molecule, or biosensor that directly monitors the calcium/calmodulin activation of MLCK in real time in smooth-muscle cells.

"These studies demonstrate the feasibility of producing transgenic biosensor mice for investigations of signaling processes in intact systems," Dr. Stull said.


Other UT Southwestern researchers involved in the study were Dr. Kristine Kamm, associate professor of physiology and a longtime collaborator for studies on muscle; Drs. Kim Lau and Gang Zhi, assistant professors of physiology; and postdoctoral researchers Drs. Eiji Isotani, Jian Huang, Yusuke Mizuno and Ramaz Geguchadze. Dr. Anthony Persechini from the University of Missouri-Kansas City also contributed. The research was supported by the National Institutes of Health and the Moss Heart Fund.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Amanda Siegfried | UT Southwestern
Further information:
http://www.utsouthwestern.edu/utsw/cda/dept37389/files/161304.html
http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>