Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female gluttony blamed on male tick

06.04.2004


A certain species of tick has learned the secret to staying slim--by remaining virgins. Female ticks who mate will drink 100 times their weight in host blood, whereas virgins aren’t so gluttonous says a University of Alberta researcher who has discovered a protein that may offer clues to a $10 billion global tick problem.



"What happens is that a female will remain attached to a host, eating slowly and waiting to be fertilized," said Dr. Reuben Kaufman from the U of A’s Faculty of Science. "If she does copulate, the seminal fluid contains an engorgement factor protein which acts as a signal to tell her to complete engorgement. Within 24 hours of copulation she will increase another 10 times her unfed weight."

Female ticks require six to 10 days to engorge fully. The feeding cycle consists of three phases: a preparatory phase when she attaches herself to the skin; a slow phase, during which the female feeds to 10 times her unfed weight and the third phase after copulation when the female increases her weight a further 10-fold. The virgin tick, however, rarely exceeds the critical weight necessary for laying some eggs.


Kaufman and Brian Weiss, who was a doctoral student in the Department of Biological Sciences at the time of this research, produced a protein--recAhEF-- from feeding-induced genes in the male gonad of the African cattle tick. This research is published in the latest issue of the Proceedings of the National Academy of Sciences journal. By injecting that protein into virgin ticks they could stimulate the tick to grow to full engorgement. Armed with that knowledge, the researchers then immunized a rabbit against recAhEF and found that about 75 per cent failed to feed beyond the critical weight, whereas mated ticks feeding on a normal rabbit engorged fully.

"We want to use these proteins as a basis of a vaccine," said Kaufman. "If we can vaccinate cattle against this protein, or voraxin as we have called it, then they would be significantly protected against ticks. Not only would it control the tick problem--which is a $10 billion problem globally--but it would inhibit the disease ticks transfer as well.

"Ticks affect the growth of calves and they affect milk production, even with minor infestations."

Currently, the major control mechanism used to treat ticks is pesticides, which often come with ecological problems and may affect the meat, said Kaufman.


Kaufman’s research was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) grant.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>