Shared Gene Switch for All Plants Found

A gene-switching mechanism dating back 400 million years to the very first plants that made it onto land has been found by plant biologists at UC Davis. A family of genes required for stem and leaf development in flowering plants is controlled in the same way in everything from mosses to a Douglas fir, according to postdoctoral researcher Sandra Floyd and John Bowman, professor of plant biology at UC Davis.

The mechanism depends on microRNAs, short pieces of RNA that switch genes off by interfering with messenger RNAs that are produced when genes are read.

Floyd and Bowman looked at a family of genes found in all major groups of land plants called class III HD-Zip genes. They found that these genes are controlled by microRNAs and that the microRNA binding region is almost identical in moss, liverworts, club moss, ferns, Douglas fir, Mexican yew and Arabidopsis, a flowering plant often used in laboratory research.

Not only are the amino acid sequences of the proteins highly conserved, but also the nucleotide sequence of the microRNA binding site in the mRNA has been conserved for 400 million years, Bowman said.

This is the first demonstration of gene regulation by a microRNA in non-flowering plants such as mosses and ferns. A similarly ancient system of regulation by microRNAs has recently been found in animals, Floyd said.

The research is published in the April 1 issue of Nature.

Media contact(s):
• John Bowman, Plant Biology, (530) 754-9652, jlbowman@ucdavis.edu
• Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Media Contact

Andy Fell University of California - Davis

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors