Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Clues For Brain Cancer Treatment Found At The ESRF

05.04.2004


A team of researchers from the University Hospital of Grenoble (CHU – Inserm U647) and the ESRF1 has found a new treatment that improves the survival of rats with high-grade gliomas.



This research was carried out at the ESRF Medical Beamline. It showed that after a year of this treatment, three rats out of 10 were considered cured, whereas without treatment, all would be dead. The results have just been published in the scientific journal Cancer Research. A glioma is one of the most frequent brain tumours in human adults, and it is not curable. Clinical trials on humans are planned for the near future.

Today, the median survival for patients with glioma is less than a year. Around 5 to 10 adults out of 100.000 suffer from this brain tumour. Traditional radiotherapy using hospital X-rays only has a palliative effect because gliomas are some of the most radio-resistant human tumours. Chemotherapy is ineffective most of the time. Several therapeutic techniques have been developed over the last years using animal models, but none has had such successful results as this new treatment with cis-platinum combined with monochromatic synchrotron x-rays. This new technique combines chemotherapy with radiotherapy in such a way that both techniques are effective when associated.


In this study, a drug called Cis-platinum was injected into the brain of rats bearing F98 glioma. The substance entered the DNAs of the tumour and limited the tumoral proliferation. A day later, at the Medical Beamline of the ESRF, the tumour was irradiated with X-rays of a very precise energy (monochromatic) The difference between these X-rays and the conventional X-ray sources used in hospitals is the brilliance: the beam produced by the ESRF synchrotron is a hundred thousand times brighter than the beam produced by a hospital X-ray machine, allowing the beam to be tuned at a convenient wavelength.

This in vivo experiment was preceded by in vitro experiments on cells using the same tumoral model (F98). This tumour is extremely radioresistant and it spreads very quickly. The mean survival time of untreated rats was 28 days. If cis-platinum was injected, they survived up to 39 days. If the rats were irradiated with X-rays at a certain wavelength, it could result in a maximum of 48 days of survival. The combination of both treatments, with a specific radiation dose and a specific X-ray wavelength appeared to be the most efficient treatment tested and offered a mean survival time of around 200 days. This means a 6-fold increase in the life span of treated rats compared to those which didn’t receive any treatment.

The success of the trials has led CHU and ESRF researchers to envisage the elaboration of a protocol in order to use these techniques on humans. “There is a lot of technological development to be carried out, but it is feasible”, explains Doctor François Estève, one of the authors of the paper. “The ESRF Medical Beamline is a unique place in the world where pre-clinical and clinical research in radiotherapy with synchrotron radiation is possible nowadays” says Doctor Alberto Bravin, responsible for the Medical Beamline. Rats and humans don’t have so much physical resemblance, so doctors and physicists still cannot say whether they would have the same outstanding results if humans were treated. But François Estève is convinced that “taking into account the impossibility nowadays of healing this brain tumour, it is really a must to try this method”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>