Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Clues For Brain Cancer Treatment Found At The ESRF


A team of researchers from the University Hospital of Grenoble (CHU – Inserm U647) and the ESRF1 has found a new treatment that improves the survival of rats with high-grade gliomas.

This research was carried out at the ESRF Medical Beamline. It showed that after a year of this treatment, three rats out of 10 were considered cured, whereas without treatment, all would be dead. The results have just been published in the scientific journal Cancer Research. A glioma is one of the most frequent brain tumours in human adults, and it is not curable. Clinical trials on humans are planned for the near future.

Today, the median survival for patients with glioma is less than a year. Around 5 to 10 adults out of 100.000 suffer from this brain tumour. Traditional radiotherapy using hospital X-rays only has a palliative effect because gliomas are some of the most radio-resistant human tumours. Chemotherapy is ineffective most of the time. Several therapeutic techniques have been developed over the last years using animal models, but none has had such successful results as this new treatment with cis-platinum combined with monochromatic synchrotron x-rays. This new technique combines chemotherapy with radiotherapy in such a way that both techniques are effective when associated.

In this study, a drug called Cis-platinum was injected into the brain of rats bearing F98 glioma. The substance entered the DNAs of the tumour and limited the tumoral proliferation. A day later, at the Medical Beamline of the ESRF, the tumour was irradiated with X-rays of a very precise energy (monochromatic) The difference between these X-rays and the conventional X-ray sources used in hospitals is the brilliance: the beam produced by the ESRF synchrotron is a hundred thousand times brighter than the beam produced by a hospital X-ray machine, allowing the beam to be tuned at a convenient wavelength.

This in vivo experiment was preceded by in vitro experiments on cells using the same tumoral model (F98). This tumour is extremely radioresistant and it spreads very quickly. The mean survival time of untreated rats was 28 days. If cis-platinum was injected, they survived up to 39 days. If the rats were irradiated with X-rays at a certain wavelength, it could result in a maximum of 48 days of survival. The combination of both treatments, with a specific radiation dose and a specific X-ray wavelength appeared to be the most efficient treatment tested and offered a mean survival time of around 200 days. This means a 6-fold increase in the life span of treated rats compared to those which didn’t receive any treatment.

The success of the trials has led CHU and ESRF researchers to envisage the elaboration of a protocol in order to use these techniques on humans. “There is a lot of technological development to be carried out, but it is feasible”, explains Doctor François Estève, one of the authors of the paper. “The ESRF Medical Beamline is a unique place in the world where pre-clinical and clinical research in radiotherapy with synchrotron radiation is possible nowadays” says Doctor Alberto Bravin, responsible for the Medical Beamline. Rats and humans don’t have so much physical resemblance, so doctors and physicists still cannot say whether they would have the same outstanding results if humans were treated. But François Estève is convinced that “taking into account the impossibility nowadays of healing this brain tumour, it is really a must to try this method”.

Montserrat Capellas | alfa
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>