Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty acid pathway, glucose combine to produce triacetic acid lactone

02.04.2004


Scientists at the University of Illinois at Urbana-Champaign have designed a potential roadmap to use a biosynthetic pathway taken from a common microorganism to produce compounds that could serve as precursors to explosives or components in everyday devices such as liquid crystal displays or anti-cancer agents.



In a presentation at the 227th National Meeting of the American Chemical Society, Illinois doctoral student Wenjuan Zha reported how the fatty acid biosynthetic pathway of Brevibacterium ammoniagenes, a bacterium commonly found in the human intestinal tract, was used for the first time with glucose -- rather than petroleum or other chemicals from non-renewable resources -- to produce triacetic acid lactone (TAL).

In a study published on line late last month, ahead of regular print publication in the Journal of the American Chemical Society, Zha and colleagues detailed their proposed biochemical mechanism, which allows the fatty acid synthase pathway (FAS-B) to use glucose to make TAL. TAL is an energetic precursor for TATB, an explosive much more stable and sensitive than TNT.


Subsequently, Zha said, TAL can be chemically changed to phloroglucinol, a pivotal structure necessary for the synthesis of a variety of bioactive and energetic compounds.

FAS-B is a primary metabolic enzyme with multiple functions, and it may be used to make many diverse value-added compounds, said Zha’s adviser Huimin Zhao, a professor of chemical and biomolecular engineering and of chemistry at Illinois.

To accomplish their task, the researchers had to understand the various domains of FAS-B that are necessary for fatty acid synthesis. Zha described how she and her colleagues used a variety of bioinformatics tools, such as the Web-accessible Biology Workbench, to analyze the gene sequence of FAS-B and identify the key catalytic residues.

They discovered that if they disabled the ketoacyl-reductase domain by replacing a catalytically active residue with an inert one by site-specific mutagenesis, it became possible to produce TAL.

The project -- funded by the Office of Naval Research and done in collaboration with John Frost, a professor of chemistry at Michigan State University --established that the FAS-B altering technique makes it possible to use the fatty acid biosynthesis route as an alternative to using benzene to produce aromatics and other organic acids, Zhao said.

Zhao’s team now is working to increase the productivity of TAL by way of directed evolution of FAS-B.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0401fattyacid.html

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>