Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty acid pathway, glucose combine to produce triacetic acid lactone

02.04.2004


Scientists at the University of Illinois at Urbana-Champaign have designed a potential roadmap to use a biosynthetic pathway taken from a common microorganism to produce compounds that could serve as precursors to explosives or components in everyday devices such as liquid crystal displays or anti-cancer agents.



In a presentation at the 227th National Meeting of the American Chemical Society, Illinois doctoral student Wenjuan Zha reported how the fatty acid biosynthetic pathway of Brevibacterium ammoniagenes, a bacterium commonly found in the human intestinal tract, was used for the first time with glucose -- rather than petroleum or other chemicals from non-renewable resources -- to produce triacetic acid lactone (TAL).

In a study published on line late last month, ahead of regular print publication in the Journal of the American Chemical Society, Zha and colleagues detailed their proposed biochemical mechanism, which allows the fatty acid synthase pathway (FAS-B) to use glucose to make TAL. TAL is an energetic precursor for TATB, an explosive much more stable and sensitive than TNT.


Subsequently, Zha said, TAL can be chemically changed to phloroglucinol, a pivotal structure necessary for the synthesis of a variety of bioactive and energetic compounds.

FAS-B is a primary metabolic enzyme with multiple functions, and it may be used to make many diverse value-added compounds, said Zha’s adviser Huimin Zhao, a professor of chemical and biomolecular engineering and of chemistry at Illinois.

To accomplish their task, the researchers had to understand the various domains of FAS-B that are necessary for fatty acid synthesis. Zha described how she and her colleagues used a variety of bioinformatics tools, such as the Web-accessible Biology Workbench, to analyze the gene sequence of FAS-B and identify the key catalytic residues.

They discovered that if they disabled the ketoacyl-reductase domain by replacing a catalytically active residue with an inert one by site-specific mutagenesis, it became possible to produce TAL.

The project -- funded by the Office of Naval Research and done in collaboration with John Frost, a professor of chemistry at Michigan State University --established that the FAS-B altering technique makes it possible to use the fatty acid biosynthesis route as an alternative to using benzene to produce aromatics and other organic acids, Zhao said.

Zhao’s team now is working to increase the productivity of TAL by way of directed evolution of FAS-B.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0401fattyacid.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>