Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methuselah enzymes: SEN and the art of molecule maintenance

02.04.2004


Single-enzyme nanoparticles, or SENs, left, and their thinner cousins, right, remain active for up to 143 days, thanks to their protective caging. (J.B. Kim, Pacific Northwest National Laboratory.)


Lab discovers way to keep short-lived catalysts active for longer than five months

Enzymes, the workhorses of chemical reactions in cells, lead short and brutal lives. They cleave and assemble proteins and metabolize compounds for a few hours, and then they are spent.

This sad fact of nature has limited the possibilities of harnessing enzymes as catalytic tools outside the cell, in uses that range from biosensing to toxic waste cleanup.



To increase the enzyme’s longevity and versatility, a team at the Department of Energy’s Pacific Northwest National Laboratory in Richland, Wash., has caged single enzymes to create a new class of catalysts called SENs, or single enzyme nanoparticles. The nanostructure protects the catalyst, allowing it to remain active for five months instead of hours.

"The principal concept can be used with many water-soluble enzymes," said Jungbae Kim, PNNL senior scientist who described the feat here today at the national meeting of the American Chemical Society.

"Converting free enzymes into these novel enzyme-containing nanoparticles can result in significantly more stable catalytic activity," added Jay Grate, PNNL laboratory fellow and SENs co-inventor.

Kim and Grate, working in the W.R. Wiley Environmental Molecular Sciences Laboratory at PNNL, modified a common protein-splitting enzyme called alpha-chymotrypsin. They modified the enzyme surface to make it soluble, then added vinyl reagents to induce the growth of molecular threads, or polymers, from the enzyme surface. A second polymerization step cross-linked silicon chains, forming a basketball-netlike structure a few nanometers thick. What result are SENs that appear in electron microscopic images as hollow enzyme-containing nanostructures about 8 nanometers across. Kim and Grate found that by using less reactive forms of vinyl they could vary the thickness of the nano-netting by half. Thick or thin, the porous netting preserves the shape of the enzyme inside yet allows its active site to interact with a substrate. SENs are also amenable to storage; they have been refrigerated for five months, losing little of their activity.

Among the uses Kim noted for SENs is the breakdown toxic waste-a single treatment could last months. Stabilized enzymes are also a prerequisite for many types of biosensors. And they may be of interest for coating surfaces, with application ranging from medicine (protecting implants from protein plaques) to shipping (keeping barnacles off hulls). PNNL is investigating several other applications in the environmental and life sciences.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-24.htm

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>