Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego bioinformatics experts help reconstruct the genomic makeup of our ancestors

02.04.2004


Scientists have generated and begun to analyze the rat genome, paving the way for comparisons with the two other mammalian genomes sequenced so far -- human, and mouse. The primary results of the Rat Genome Sequencing Project Consortium (RGSPC) are presented in the April 1 issue of Nature, and an additional thirty manuscripts describing further detailed analyses are contained in the April issue of the journal Genome Research.



The cover image of Genome Research (see end of release) was produced by University of California, San Diego professors Pavel Pevzner and Glenn Tesler and their co-author on the journal paper, Guillaume Bourque of the University of Montreal. It depicts the course of evolution for the X chromosome in humans, rats and mice from a common ancestor over 80 million years ago and, for the first time, reconstructs the genomic architecture of mammalian ancestors. “It contributes to the solution of the so-called original synteny problem in biology,” said Pevzner, the Ronald R. Taylor Professor of Computer Science at UCSD’s Jacobs School of Engineering. “While scientists routinely find bones that lead to often unrealistic reconstructions of dinosaurs and other prehistoric animals on movie screens and in toy stores, this is the first rigorous reconstruction of the genomic makeup of our mammalian ancestors.”

Pevzner and Tesler are among the more than 200 co-authors of the Nature article, and expanded on their part of the research in a Genome Research paper with Bourque titled “Reconstructing the Genomic Architecture of Ancestral Mammals: Lessons from Human, Mouse and Rat Genomes.” “Having the third genome allows us to reconstruct the putative genomic architecture of our mammalian ancestor,” said Pevzner. “Our contribution has been to demonstrate how to look at the human, mouse and rat genomes -- each roughly three billion letters in length -- and then infer the evolutionary earthquakes that shaped their genomic architectures.”


Pevzner and his colleagues contend that those earthquakes -- major genomic rearrangements -- tend to occur at evolutionary hot spots known as breakpoints, which are similar to fault zones where earthquakes are more likely to hit. “We found a few hundred strings of roughly a million letters long, and we specifically focused on those large blocks that are shared between the human, mouse and now rat genomes,” said Tesler, an assistant professor of mathematics at UCSD. “After sequencing these three genomes, it is clear that substantial rearrangements in the human genome happen only once in a million years, while the rate of rearrangements in the rat and mouse is much faster.”

Comparison of the rat genome to human and mouse allows a unique view of mammalian evolution. The rat data show about 40 percent of the modern mammalian genome derives from the last common mammalian ancestor. These ‘core’ one billion bases encode nearly all the genes and their regulatory signals, accounting for the similarities among mammals. “We now have information on all three genomes and we can see how many common architectural blocks we share,” said Pevzner. “It is almost like a triangle: in the case of the X chromosome, mouse and rat are about the same distance apart as rat and human, and human and mouse.”

The study found the rat genome contains similar numbers of genes to the human and mouse genomes, but at 2.75 billion nucleotides is smaller than human (2.9 billion) and slightly larger than mouse (2.6 billion). Almost all human genes known to be associated with diseases have counterparts in the rat genome and appear highly conserved through mammalian evolution. A selected few families of genes have been expanded in the rat, including smell receptors and genes for dealing with toxins, and these give clues to the distinctive physiology of the species.

“The rat genome allows us to reconstruct the genome’s architecture, especially for the sex X chromosome, which doesn’t exchange genetic material with the other chromosome,” explained Pevzner. “We can come to a very reliable evolutionary scenario and genomic architecture of the X chromosome. So essentially we are solving the original phylogeny problem -- how to reconstruct the genomic architecture of our mammalian ancestor.”

The Rat Genome Sequencing Project Consortium is led by the Human Genome Sequencing Center at Baylor College of Medicine (BCM-HGSC) in Houston, in conjunction with the National Heart, Lung and Blood Institute (NHLBI) and the National Human Genome Research Institute (NHGRI). “This is an investment that is destined to yield major payoffs in the fight against human disease,” said NIH Director Elias A. Zerhouni, M.D. “For nearly 200 years, the laboratory rat has played a valuable role in efforts to understand human biology and to develop new and better drugs. Now, armed with this sequencing data, a new generation of researchers will be able to greatly improve the utility of rat models and thereby improve human health.”

The Brown Norway strain of rat sequence is the third complete mammalian genome to be sequenced to high quality and described in a major scientific publication. Three-way comparisons with the human and mouse genomes will help to resolve details of mammalian evolution. “The sequencing of the rat genome constitutes another major milestone in our effort to expand our knowledge of the human genome,” said NHGRI Director Francis S. Collins, M.D. “As we build upon the foundation laid by the Human Genome Project, it’s become clear that comparing the human genome with those of other organisms is the most powerful tool available to understand the complex genomic components involved in human health and disease.”

A network of centers generated data and resources for the RGSP, including the BCM-HGSC, Celera Genomics, Genome Therapeutics Corporation, British Columbia Cancer Agency Genome Sciences Centre, The Institute for Genomic Research, University of Utah, Medical College of Wisconsin, The Children’s Hospital of Oakland Research Institute, and Max-Delbrück-Center for Molecular Medicine (Berlin). After assembly of the genome at the BCM-HGSC, analysis was performed by an international team, representing over 20 groups in six countries and relying largely on gene and protein predictions produced by the Ensembl project of the EMBL-EBI and Sanger Institute (UK). Funding for the RGSP was largely provided by the NHLBI and the NHGRI with additional private funding provided to the BCM-HGSC by the Kleberg Foundation.

Doug Ramsey | UCSD
Further information:
http://www.jacobsschool.ucsd.edu/news_events/release.sfe?id=206

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>