Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing gene a potential risk factor for birth defects

01.04.2004


Research in mice examines how embryo protects itself from oxidative stress



Mouse embryos missing a gene that aids in the repair of DNA damage are at greater risk of developing birth defects, say U of T scientists. The finding has implications for research into the cause of birth defects in humans.

The gene, also found in humans, produces an important protein called ATM which senses DNA damage caused by reactive oxygen species and directs other proteins to repair it. Reactive oxygen species are a normal product of the body’s production of energy but can jump to toxic levels when cells are exposed to certain drugs, environmental chemicals and agents such as ionizing radiation.


In a study published online by the FASEB Journal in March, researchers at U of T’s Leslie Dan Faculty of Pharmacy found that mice embryos genetically engineered to lack one or both copies of the ATM gene and then exposed to ionizing radiation and a subsequent overload of reactive oxygen species were at increased risk for dying in utero, developing birth defects or experiencing other developmental problems after birth. Because the mice lacked the protection of the ATM protein, these problems occurred even though the level of radiation was far below that which would normally affect a developing embryo.

"Although these pathways have not been investigated in the human embryo, these findings in mice provide new insights into how the embryo protects itself from oxidative stress and the associated risk factors for embryonic death and abnormal development," says senior author Professor Peter Wells. "This research provides evidence that the ATM gene protects embryos from birth defects initiated by DNA damage. In fact, when this gene is missing in mice, even without exposure to drugs, the normal physiological production of reactive oxygen species can be enough to damage the embryo. The next step is to see if this holds true for humans."

The prevalence of humans missing one copy of the ATM gene is relatively common, around one to two per cent of the population, says Wells. There is also a rare condition known as ataxia telangiectasia or AT in which people have no copies of the gene and are highly susceptible to problems such as neurological disorders and cancer.

Not much is known about why some children are more susceptible to birth defects than others, says Wells. If future research found that humans had the same sort of ATM sensitivity as mice, he says, it would suggest the potential for diagnostic tests to determine if an embryo is at risk for birth defects because it lacks the gene and even for possible protein therapies to help counteract ATM deficits in embryos.

"We want to see if the mechanisms that occur in mice will explain what occurs in humans or not," he says. "It’s like a Las Vegas slot machine, in reverse. If all the bad lemons lined up - if you had a lot of risk factors, such as no ATM gene combined with exposure to certain drugs and lack of other pathways that protect against reactive oxygen species - you’d be in big trouble, according to our theory in mice. If it’s only a few of the lemons, the risk for developing birth defects or dying in utero would be lower."

The study, by lead author and PhD candidate Rebecca Laposa, was funded by grants and a doctoral award from the Canadian Institutes of Health Research and by a Society of Toxicology fellowship. Other researchers involved in the study were pharmacy professor Jeffrey Henderson and undergraduate student Elaine Xu.

Jessica Whiteside | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040331a.asp

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>